1
|
Chen Z, Cai Y. An anti-Hebbian model for binocular visual plasticity and its attentional modulation. Commun Biol 2025; 8:418. [PMID: 40075123 PMCID: PMC11903768 DOI: 10.1038/s42003-025-07833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Monocular deprivation during the critical period impairs the cortical structure and visual function of the deprived eye. Conversely, transient occlusion of one eye in adults enhances the predominance of that eye. This counter-intuitive effect of short-term monocular deprivation is a form of homeostatic plasticity. However, whether this sensory plasticity requires attention, and the underlying neural mechanisms remain unclear. Here, through a psychophysical experiment, we demonstrate that the deprivation effect is dramatically attenuated in the absence of attention. We develop a neural computational model incorporating the Hebbian learning rule in interocular inhibitory synapses (i.e., anti-Hebbian learning) to explain the deprivation effect. Our model predicts both the boosting of the deprived eye and its dependence on attention. Moreover, it accounts for other forms of binocular plasticity, including plasticity observed in prolonged binocular rivalry. We suggest that short-term binocular plasticity arises from the plasticity in inhibitory connections between the two monocular pathways.
Collapse
Affiliation(s)
- Zhengbo Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yongchun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Wang J, He X, Bao M. Attention enhances short-term monocular deprivation effect. Psych J 2025; 14:84-93. [PMID: 39396922 PMCID: PMC11787881 DOI: 10.1002/pchj.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
Patching one eye of an adult human for a few hours has been found to promote the dominance of the patched eye, which is called short-term monocular deprivation effect. Interestingly, recent work has reported that prolonged eye-specific attention can also cause a shift of ocular dominance toward the unattended eye though visual inputs during adaptation are balanced across the eyes. Considering that patching blocks all input information from one eye, attention is presumably deployed to the opposite eye. Therefore, the short-term monocular deprivation effect might be, in part, mediated by eye-specific attentional modulation. Yet this question remains largely unanswered. To address this issue, here we asked participants to perform an attentive tracking task with one eye patched. During the tracking, participants were presented with both target gratings (attended stimuli) and distractor gratings (unattended stimuli) that were distinct from each other in fundamental visual features. Before and after one hour of tracking, they completed a binocular rivalry task to measure perceptual ocular dominance. A larger shift of ocular dominance toward the deprived eye was observed when the binocular rivalry testing gratings shared features with the target gratings during the tracking compared to when they shared features with the distractor gratings. This result, for the first time, suggests that attention can boost the strength of the short-term monocular deprivation effect. Therefore, the present study sheds new light on the role of attention in ocular dominance plasticity.
Collapse
Affiliation(s)
- Jue Wang
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xin He
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Acquafredda M, Binda P. Pupillometry indexes ocular dominance plasticity. Vision Res 2024; 222:108449. [PMID: 38909478 DOI: 10.1016/j.visres.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Short-term monocular deprivation in normally sighted adult humans produces a transient shift of ocular dominance, boosting the deprived eye. This effect has been documented with both perceptual tests and through physiological recordings, but no previous study simultaneously measured physiological responses and the perceptual effects of deprivation. Here we propose an integrated experimental paradigm that combines binocular rivalry with pupillometry, to introduce an objective physiological index of ocular dominance plasticity, acquired concurrently with perceptual testing. Ten participants reported the perceptual dynamics of binocular rivalry, while we measured pupil diameter. Stimuli were a white and a black disk, each presented monocularly. Rivalry dynamics and pupil-size traces were compared before and after 2 h of monocular deprivation, achieved by applying a translucent patch over the dominant eye. Consistent with prior research, we observed that monocular deprivation boosts the deprived-eye signal and consequently increases ocular dominance. In line with previous studies, we also observed subtle but systematic modulations of pupil size that tracked alternations between exclusive dominance phases of the black or white disk. Following monocular deprivation, the amplitude of these pupil-size modulations increased, which is consistent with the post-deprivation boost of the deprived eye and the increase of ocular dominance. This provides evidence that deprivation impacts the effective strength of monocular visual stimuli, coherently affecting perceptual reports and the automatic and unconscious regulation of pupil diameter. Our results show that a combined paradigm of binocular rivalry and pupillometry gives new insights into the physiological mechanisms underlying deprivation effects.
Collapse
Affiliation(s)
- Miriam Acquafredda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
4
|
Whyte CJ, Redinbaugh MJ, Shine JM, Saalmann YB. Thalamic contributions to the state and contents of consciousness. Neuron 2024; 112:1611-1625. [PMID: 38754373 PMCID: PMC11537458 DOI: 10.1016/j.neuron.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Consciousness can be conceptualized as varying along at least two dimensions: the global state of consciousness and the content of conscious experience. Here, we highlight the cellular and systems-level contributions of the thalamus to conscious state and then argue for thalamic contributions to conscious content, including the integrated, segregated, and continuous nature of our experience. We underscore vital, yet distinct roles for core- and matrix-type thalamic neurons. Through reciprocal interactions with deep-layer cortical neurons, matrix neurons support wakefulness and determine perceptual thresholds, whereas the cortical interactions of core neurons maintain content and enable perceptual constancy. We further propose that conscious integration, segregation, and continuity depend on the convergent nature of corticothalamic projections enabling dimensionality reduction, a thalamic reticular nucleus-mediated divisive normalization-like process, and sustained coherent activity in thalamocortical loops, respectively. Overall, we conclude that the thalamus plays a central topological role in brain structures controlling conscious experience.
Collapse
Affiliation(s)
- Christopher J Whyte
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | | | - James M Shine
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin National Primate Research Center, Madison, WI, USA
| |
Collapse
|
5
|
Wang J, Song F, He X, Bao M. Negligible contribution of adaptation of ocular opponency neurons to the effect of short-term monocular deprivation. Front Psychol 2024; 14:1282113. [PMID: 38274682 PMCID: PMC10809396 DOI: 10.3389/fpsyg.2023.1282113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Modeling work on binocular rivalry has described how ocular opponency neurons represent interocular conflict. These neurons have recently been considered to mediate an ocular dominance shift to the eye that has viewed a backward movie for long during which time the other eye is presented with a regular movie. Unlike typical short-term monocular deprivation, the visual inputs are comparable across eyes in that "dichoptic-backward-movie" paradigm. Therefore, it remains unclear whether the ocular opponency neurons are also responsible for the short-term monocular deprivation effect which is prevalently explained by the homeostatic compensation theory. We designed two experiments from distinct perspectives to investigate this question. Methods In Experiment 1, we mitigated the imbalance in the activity of opponency neurons between the two eyes during monocular deprivation by presenting video stimuli alternately. In Experiment 2, we directly evaluated the response of opponency neurons before and after monocular deprivation using SSVEP techniques. Results Consistent with each other, both experiments failed to provide reliable evidence supporting the involvement of ocular opponency neurons in the short-term monocular deprivation effect. Discussion Our results suggest that ocular opponency neurons may not play an essential role in the short-term monocular deprivation effect, potentially due to interference from the homeostatic plasticity mechanism.
Collapse
Affiliation(s)
- Jue Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fangxing Song
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xin He
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Beijing, China
| |
Collapse
|
6
|
Steinwurzel C, Morrone MC, Sandini G, Binda P. Active vision gates ocular dominance plasticity in human adults. Curr Biol 2023; 33:R1038-R1040. [PMID: 37875073 DOI: 10.1016/j.cub.2023.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 10/26/2023]
Abstract
Primary visual cortex (V1) retains a form of plasticity in adult humans: a brief period of monocular deprivation induces an enhanced response to the deprived eye, which can stabilize into a consolidated plastic change1,2 despite unaltered thalamic input3. This form of homeostatic plasticity in adults is thought to act through neuronal competition between the representations of the two eyes, which are still separate in primary visual cortex4,5. During monocular occlusion, neurons of the deprived eye are thought to increase response gain given the absence of visual input, leading to the post-deprivation enhancement. If the decrease of reliability of the monocular response is crucial to establish homeostatic plasticity, this could be induced in several different ways. There is increasing evidence that V1 processing is affected by voluntary action, allowing it to take into account the visual effects of self-motion6, important for efficient active vision7. Here we asked whether ocular dominance homeostatic plasticity could be elicited without degrading the quality of monocular visual images but simply by altering their role in visuomotor control by introducing a visual delay in one eye while participants actively performed a visuomotor task; this causes a discrepancy between what the subject sees and what he/she expects to see. Our results show that homeostatic plasticity is gated by the consistency between the monocular visual inputs and a person's actions, suggesting that action not only shapes visual processing but may also be essential for plasticity in adults.
Collapse
Affiliation(s)
- Cecilia Steinwurzel
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
| | - Giulio Sandini
- Research Unit of Robotics, Brain, and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
7
|
Prosper A, Pasqualetti M, Morrone MC, Lunghi C. The duration effect of short-term monocular deprivation measured by binocular rivalry and binocular combination. Vision Res 2023; 211:108278. [PMID: 37352718 DOI: 10.1016/j.visres.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
The ocular dominance shift observed after short-term monocular deprivation is a widely used measure of visual homeostatic plasticity in adult humans. Binocular rivalry and binocular combination techniques are used interchangeably to characterize homeostatic plasticity, sometimes leading to contradictory results. Here we directly compare the effect of short-term monocular deprivation on ocular dominance measured by either binocular rivalry or binocular combination and its dependence on the duration of deprivation (15 or 120 min) in the same group of participants. Our results show that both binocular rivalry and binocular combination provide reliable estimates of ocular dominance, which are strongly correlated across techniques both before and after deprivation. Moreover, while 15 min of monocular deprivation induce a larger shift of ocular dominance when measured using binocular combination compared to binocular rivalry, for both techniques, the shift in ocular dominance exhibits a strong dependence on the duration of monocular deprivation, with longer deprivation inducing a larger and longer-lasting shift in ocular dominance. Taken together, our results indicate that both binocular rivalry and binocular combination offer very consistent and reliable measurements of both ocular dominance and the effect short-term monocular deprivation.
Collapse
Affiliation(s)
- Antoine Prosper
- Laboratoire Des Systèmes Perceptifs, Département d'études Cognitives, École Normale Supérieure, PSL University, CNRS, 75005 Paris, France
| | - Martina Pasqualetti
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; IRCCS Stella Maris Foundation, Pisa, Italy
| | - Claudia Lunghi
- Laboratoire Des Systèmes Perceptifs, Département d'études Cognitives, École Normale Supérieure, PSL University, CNRS, 75005 Paris, France.
| |
Collapse
|
8
|
Kam KY, Chang DHF. Sensory eye dominance plasticity in the human adult visual cortex. Front Neurosci 2023; 17:1250493. [PMID: 37746154 PMCID: PMC10513037 DOI: 10.3389/fnins.2023.1250493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Sensory eye dominance occurs when the visual cortex weighs one eye's data more heavily than those of the other. Encouragingly, mechanisms underlying sensory eye dominance in human adults retain a certain degree of plasticity. Notably, perceptual training using dichoptically presented motion signal-noise stimuli has been shown to elicit changes in sensory eye dominance both in visually impaired and normal observers. However, the neural mechanisms underlying these learning-driven improvements are not well understood. Here, we measured changes in fMRI responses before and after a five-day visual training protocol to determine the neuroplastic changes along the visual cascade. Fifty visually normal observers received training on a dichoptic or binocular variant of a signal-in-noise (left-right) motion discrimination task over five consecutive days. We show significant shifts in sensory eye dominance following training, but only for those who received dichoptic training. Pattern analysis of fMRI responses revealed that responses of V1 and hMT+ predicted sensory eye dominance for both groups, but only before training. After dichoptic (but not binocular) visual training, responses of V1 changed significantly, and were no longer able to predict sensory eye dominance. Our data suggest that perceptual training-driven changes in eye dominance are driven by a reweighting of the two eyes' data in the primary visual cortex. These findings may provide insight into developing region-targeted rehabilitative paradigms for the visually impaired, particularly those with severe binocular imbalance.
Collapse
Affiliation(s)
- Ka Yee Kam
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dorita H. F. Chang
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
9
|
Gong Z, Zhou M, Dai Y, Wen Y, Liu Y, Zhen Z. A large-scale fMRI dataset for the visual processing of naturalistic scenes. Sci Data 2023; 10:559. [PMID: 37612327 PMCID: PMC10447576 DOI: 10.1038/s41597-023-02471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
One ultimate goal of visual neuroscience is to understand how the brain processes visual stimuli encountered in the natural environment. Achieving this goal requires records of brain responses under massive amounts of naturalistic stimuli. Although the scientific community has put a lot of effort into collecting large-scale functional magnetic resonance imaging (fMRI) data under naturalistic stimuli, more naturalistic fMRI datasets are still urgently needed. We present here the Natural Object Dataset (NOD), a large-scale fMRI dataset containing responses to 57,120 naturalistic images from 30 participants. NOD strives for a balance between sampling variation between individuals and sampling variation between stimuli. This enables NOD to be utilized not only for determining whether an observation is generalizable across many individuals, but also for testing whether a response pattern is generalized to a variety of naturalistic stimuli. We anticipate that the NOD together with existing naturalistic neuroimaging datasets will serve as a new impetus for our understanding of the visual processing of naturalistic stimuli.
Collapse
Affiliation(s)
- Zhengxin Gong
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Ming Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yuxuan Dai
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Yushan Wen
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Youyi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Zonglei Zhen
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Martínez-Vilavella G, Pujol J, Blanco-Hinojo L, Deus J, Rivas I, Persavento C, Sunyer J, Foraster M. The effects of exposure to road traffic noise at school on central auditory pathway functional connectivity. ENVIRONMENTAL RESEARCH 2023; 226:115574. [PMID: 36841520 DOI: 10.1016/j.envres.2023.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
As the world becomes more urbanized, more people become exposed to traffic and the risks associated with a higher exposure to road traffic noise increase. Excessive exposure to environmental noise could potentially interfere with functional maturation of the auditory brain in developing individuals. The aim of the present study was to assess the association between exposure to annual average road traffic noise (LAeq) in schools and functional connectivity of key elements of the central auditory pathway in schoolchildren. A total of 229 children from 34 representative schools in the city of Barcelona with ages between 8 and 12 years (49.2% girls) were evaluated. LAeq was obtained as the mean of 2-consecutive day measurements inside classrooms before lessons started following standard procedures to obtain an indicator of long-term road traffic noise levels. A region-of-interest functional connectivity Magnetic Resonance Imaging (MRI) approach was adopted. Functional connectivity maps were generated for the inferior colliculus, medial geniculate body of the thalamus and primary auditory cortex as key levels of the central auditory pathway. Road traffic noise in schools was significantly associated with stronger connectivity between the inferior colliculus and a bilateral thalamic region adjacent to the medial geniculate body, and with stronger connectivity between the medial geniculate body and a bilateral brainstem region adjacent to the inferior colliculus. Such a functional connectivity strengthening effect did not extend to the cerebral cortex. The anatomy of the association implicating subcortical relays suggests that prolonged road traffic noise exposure in developing individuals may accelerate maturation in the basic elements of the auditory pathway. Future research is warranted to establish whether such a faster maturation in early pathway levels may ultimately reduce the developing potential in the whole auditory system.
Collapse
Affiliation(s)
- Gerard Martínez-Vilavella
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain
| | - Cecilia Persavento
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Maria Foraster
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain; PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain.
| |
Collapse
|
11
|
Menicucci D, Lunghi C, Zaccaro A, Morrone MC, Gemignani A. Mutual interaction between visual homeostatic plasticity and sleep in adult humans. eLife 2022; 11:70633. [PMID: 35972073 PMCID: PMC9417418 DOI: 10.7554/elife.70633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep and plasticity are highly interrelated, as sleep slow oscillations and sleep spindles are associated with consolidation of Hebbian-based processes. However, in adult humans, visual cortical plasticity is mainly sustained by homeostatic mechanisms, for which the role of sleep is still largely unknown. Here, we demonstrate that non-REM sleep stabilizes homeostatic plasticity of ocular dominance induced in adult humans by short-term monocular deprivation: the counterintuitive and otherwise transient boost of the deprived eye was preserved at the morning awakening (>6 hr after deprivation). Subjects exhibiting a stronger boost of the deprived eye after sleep had increased sleep spindle density in frontopolar electrodes, suggesting the involvement of distributed processes. Crucially, the individual susceptibility to visual homeostatic plasticity soon after deprivation correlated with the changes in sleep slow oscillations and spindle power in occipital sites, consistent with a modulation in early occipital visual cortex.
Collapse
Affiliation(s)
- Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Claudia Lunghi
- Département d'études Cognitives, École Normale Supérieure, UMR 8248 CNRS, Paris, France
| | - Andrea Zaccaro
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Maria Concetta Morrone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|