1
|
Critcher M, Pang JM, Huang ML. Mapping the FGF2 Interactome Identifies a Functional Proteoglycan Coreceptor. ACS Chem Biol 2025; 20:105-116. [PMID: 39704408 PMCID: PMC11858877 DOI: 10.1021/acschembio.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Fibroblast growth factor 2 (FGF2) is a multipotent growth factor and signaling protein that exhibits broad functions across multiple cell types. These functions are often initiated by binding to growth factor receptors and fine-tuned by glycosaminoglycan (GAG)-modified proteins called proteoglycans. The various outputs of FGF2 signaling and functions arise from a dynamic and cell type-specific set of binding partners. However, the interactome of FGF2 has yet to be comprehensively determined. Moreover, the identity of the proteoglycan proteins carrying GAG chains is often overlooked and remains unknown in most cell contexts. Here, we perform peroxidase-catalyzed live cell proximity labeling using an engineered APEX2-FGF2 fusion protein to map the interactome of FGF2. Across two cell lines with established and distinct FGF2-driven functions, we greatly expand upon the known FGF2 interactome, identifying >600 new putative FGF2 interactors. Notably, our results demonstrate a key role for the GAG binding capacity of FGF2 in modulating its interactome.
Collapse
Affiliation(s)
- Meg Critcher
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| | - Jia Meng Pang
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| | - Mia L Huang
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| |
Collapse
|
2
|
Biadun M, Sochacka M, Kalka M, Chorazewska A, Karelus R, Krowarsch D, Opalinski L, Zakrzewska M. Uncovering key steps in FGF12 cellular release reveals a common mechanism for unconventional FGF protein secretion. Cell Mol Life Sci 2024; 81:356. [PMID: 39158730 PMCID: PMC11335280 DOI: 10.1007/s00018-024-05396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
FGF12 belongs to a subfamily of FGF proteins called FGF homologous factors (FHFs), which until recently were thought to be non-signaling intracellular proteins. Our recent studies have shown that although they lack a conventional signal peptide for secretion, they can reach the extracellular space, especially under stress conditions. Here, we unraveled that the long "a" isoform of FGF12 is secreted in a pathway involving the A1 subunit of Na(+)/K(+) ATPase (ATP1A1), Tec kinase and lipids such as phosphatidylinositol and phosphatidylserine. Further, we showed that the short "b" isoform of FGF12, which binds ATP1A1 and phosphatidylserine less efficiently, is not secreted from cells. We also indicated regions in the FGF12a protein sequence that are crucial for its secretion, including N-terminal fragment and specific residues, and proposed that liquid-liquid phase separation may be important in this process. Our results strongly suggest that the mechanism of this process is very similar for all unconventionally secreted FGF proteins.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Martyna Sochacka
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Chorazewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| |
Collapse
|
3
|
Lolicato F, Nickel W, Haucke V, Ebner M. Phosphoinositide switches in cell physiology - From molecular mechanisms to disease. J Biol Chem 2024; 300:105757. [PMID: 38364889 PMCID: PMC10944118 DOI: 10.1016/j.jbc.2024.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
4
|
Lolicato F, Steringer JP, Saleppico R, Beyer D, Fernandez-Sobaberas J, Unger S, Klein S, Riegerová P, Wegehingel S, Müller HM, Schmitt XJ, Kaptan S, Freund C, Hof M, Šachl R, Chlanda P, Vattulainen I, Nickel W. Disulfide bridge-dependent dimerization triggers FGF2 membrane translocation into the extracellular space. eLife 2024; 12:RP88579. [PMID: 38252473 PMCID: PMC10945597 DOI: 10.7554/elife.88579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergGermany
- Department of Physics, University of HelsinkiHelsinkiFinland
| | | | | | - Daniel Beyer
- Heidelberg University Biochemistry CenterHeidelbergGermany
| | | | | | - Steffen Klein
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | - Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | | | | | - Xiao J Schmitt
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Shreyas Kaptan
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | | | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergGermany
| |
Collapse
|
5
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Cengiz Winter N, Karakaya M, Mosen P, Brusius I, Anlar B, Haliloglu G, Winter D, Wirth B. Proteomic Investigation of Differential Interactomes of Glypican 1 and a Putative Disease-Modifying Variant of Ataxia. J Proteome Res 2023; 22:3081-3095. [PMID: 37585105 PMCID: PMC10476613 DOI: 10.1021/acs.jproteome.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 08/17/2023]
Abstract
In a currently 13-year-old girl of consanguineous Turkish parents, who developed unsteady gait and polyneuropathy at the ages of 3 and 6 years, respectively, we performed whole genome sequencing and identified a biallelic missense variant c.424C>T, p.R142W in glypican 1 (GPC1) as a putative disease-associated variant. Up to date, GPC1 has not been associated with a neuromuscular disorder, and we hypothesized that this variant, predicted as deleterious, may be causative for the disease. Using mass spectrometry-based proteomics, we investigated the interactome of GPC1 WT and the missense variant. We identified 198 proteins interacting with GPC1, of which 16 were altered for the missense variant. This included CANX as well as vacuolar ATPase (V-ATPase) and the mammalian target of rapamycin complex 1 (mTORC1) complex members, whose dysregulation could have a potential impact on disease severity in the patient. Importantly, these proteins are novel interaction partners of GPC1. At 10.5 years, the patient developed dilated cardiomyopathy and kyphoscoliosis, and Friedreich's ataxia (FRDA) was suspected. Given the unusually severe phenotype in a patient with FRDA carrying only 104 biallelic GAA repeat expansions in FXN, we currently speculate that disturbed GPC1 function may have exacerbated the disease phenotype. LC-MS/MS data are accessible in the ProteomeXchange Consortium (PXD040023).
Collapse
Affiliation(s)
- Nur Cengiz Winter
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne, University
of Cologne, 50931 Cologne, Germany
| | - Mert Karakaya
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne, University
of Cologne, 50931 Cologne, Germany
- Center
for Rare Diseases Cologne, University Hospital
of Cologne, 50931 Cologne, Germany
| | - Peter Mosen
- Institute
for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Isabell Brusius
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
| | - Banu Anlar
- Department
of Pediatrics, Division of Pediatric Neurology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey
| | - Goknur Haliloglu
- Department
of Pediatrics, Division of Pediatric Neurology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey
| | - Dominic Winter
- Institute
for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Brunhilde Wirth
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne, University
of Cologne, 50931 Cologne, Germany
- Center
for Rare Diseases Cologne, University Hospital
of Cologne, 50931 Cologne, Germany
| |
Collapse
|
7
|
Singh V, Macharová S, Riegerová P, Steringer JP, Müller HM, Lolicato F, Nickel W, Hof M, Šachl R. Determining the Functional Oligomeric State of Membrane-Associated Protein Oligomers Forming Membrane Pores on Giant Lipid Vesicles. Anal Chem 2023. [PMID: 37148264 DOI: 10.1021/acs.analchem.2c05692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Several peripheral membrane proteins are known to form membrane pores through multimerization. In many cases, in biochemical reconstitution experiments, a complex distribution of oligomeric states has been observed that may, in part, be irrelevant to their physiological functions. This phenomenon makes it difficult to identify the functional oligomeric states of membrane lipid interacting proteins, for example, during the formation of transient membrane pores. Using fibroblast growth factor 2 (FGF2) as an example, we present a methodology applicable to giant lipid vesicles by which functional oligomers can be distinguished from nonspecifically aggregated proteins without functionality. Two distinct populations of fibroblast growth factor 2 were identified with (i) dimers to hexamers and (ii) a broad population of higher oligomeric states of membrane-associated FGF2 oligomers significantly distorting the original unfiltered histogram of all detectable oligomeric species of FGF2. The presented statistical approach is relevant for various techniques for characterizing membrane-dependent protein oligomerization.
Collapse
Affiliation(s)
- Vandana Singh
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu, 2027/3, 121 16 Prague, Czech Republic
| | - Sabína Macharová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Julia P Steringer
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Hans-Michael Müller
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| |
Collapse
|
8
|
Jacopo M. Unconventional protein secretion (UPS): role in important diseases. MOLECULAR BIOMEDICINE 2023; 4:2. [PMID: 36622461 PMCID: PMC9827022 DOI: 10.1186/s43556-022-00113-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Unconventional protein secretion (UPS) is the new secretion process discovered in liquid form over three decades ago. More recently, UPS has been shown to operate also in solid forms generated from four types of organelles: fractions of lysosomes and autophagy (APh) undergoing exocytosis; exosomes and ectosomes, with their extracellular vesicles (EVs). Recently many mechanisms and proteins of these solid forms have been shown to depend on UPS. An additional function of UPS is the regulation of diseases, often investigated separately from each other. In the present review, upon short presentation of UPS in healthy cells and organs, interest is focused on the mechanisms and development of diseases. The first reported are neurodegenerations, characterized by distinct properties. Additional diseases, including inflammasomes, inflammatory responses, glial effects and other diseases of various origin, are governed by proteins generated, directly or alternatively, by UPS. The diseases most intensely affected by UPS are various types of cancer, activated in most important processes: growth, proliferation and invasion, relapse, metastatic colonization, vascular leakiness, immunomodulation, chemoresistence. The therapy role of UPS diseases depends largely on exosomes. In addition to affecting neurodegenerative diseases, its special aim is the increased protection against cancer. Its immense relevance is due to intrinsic features, including low immunogenicity, biocompatibility, stability, and crossing of biological barriers. Exosomes, loaded with factors for pharmacological actions and target cell sensitivity, induce protection against various specific cancers. Further expansion of disease therapies is expected in the near future.
Collapse
Affiliation(s)
- Meldolesi Jacopo
- grid.18887.3e0000000417581884San Raffaele Institute, Vita-Salute San Raffaele University, Milan, Italy ,CNR Institute of Neuroscience at the Milano-Bicocca University, Milan, Italy
| |
Collapse
|
9
|
Lolicato F, Saleppico R, Griffo A, Meyer A, Scollo F, Pokrandt B, Müller HM, Ewers H, Hähl H, Fleury JB, Seemann R, Hof M, Brügger B, Jacobs K, Vattulainen I, Nickel W. Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2. J Biophys Biochem Cytol 2022; 221:213511. [PMID: 36173379 PMCID: PMC9526255 DOI: 10.1083/jcb.202106123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
FGF2 is a cell survival factor involved in tumor-induced angiogenesis that is secreted through an unconventional secretory pathway based upon direct protein translocation across the plasma membrane. Here, we demonstrate that both PI(4,5)P2-dependent FGF2 recruitment at the inner plasma membrane leaflet and FGF2 membrane translocation into the extracellular space are positively modulated by cholesterol in living cells. We further revealed cholesterol to enhance FGF2 binding to PI(4,5)P2-containing lipid bilayers. Based on extensive atomistic molecular dynamics (MD) simulations and membrane tension experiments, we proposed cholesterol to modulate FGF2 binding to PI(4,5)P2 by (i) increasing head group visibility of PI(4,5)P2 on the membrane surface, (ii) increasing avidity by cholesterol-induced clustering of PI(4,5)P2 molecules triggering FGF2 oligomerization, and (iii) increasing membrane tension facilitating the formation of lipidic membrane pores. Our findings have general implications for phosphoinositide-dependent protein recruitment to membranes and explain the highly selective targeting of FGF2 toward the plasma membrane, the subcellular site of FGF2 membrane translocation during unconventional secretion of FGF2.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany.,Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Alessandra Griffo
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Annalena Meyer
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Federica Scollo
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Bianca Pokrandt
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | | | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Hähl
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | | | - Ralf Seemann
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Karin Jacobs
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Max Planck School Matter to Life, Heidelberg, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
10
|
Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, Zhang SJ. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer 2022; 21:207. [PMID: 36320056 PMCID: PMC9623991 DOI: 10.1186/s12943-022-01671-0] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Exosomes are well-known key mediators of intercellular communication and contribute to various physiological and pathological processes. Their biogenesis involves four key steps, including cargo sorting, MVB formation and maturation, transport of MVBs, and MVB fusion with the plasma membrane. Each process is modulated through the competition or coordination of multiple mechanisms, whereby diverse repertoires of molecular cargos are sorted into distinct subpopulations of exosomes, resulting in the high heterogeneity of exosomes. Intriguingly, cancer cells exploit various strategies, such as aberrant gene expression, posttranslational modifications, and altered signaling pathways, to regulate the biogenesis, composition, and eventually functions of exosomes to promote cancer progression. Therefore, exosome biogenesis-targeted therapy is being actively explored. In this review, we systematically summarize recent progress in understanding the machinery of exosome biogenesis and how it is regulated in the context of cancer. In particular, we highlight pharmacological targeting of exosome biogenesis as a promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Qing-Fang Han
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wen-Jia Li
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Kai-Shun Hu
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Jie Gao
- grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China
| | - Wen-Long Zhai
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing-Hua Yang
- grid.412633.10000 0004 1799 0733Clinical Systems Biology Key Laboratories of Henan, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shui-Jun Zhang
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China ,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, 450052 Henan China
| |
Collapse
|
11
|
Zhao J, Guo M, Song Y, Liu S, Liao R, Zhang Y, Zhang Y, Yang Q, Gu Y, Huang X. Serum exosomal and serum glypican-1 are associated with early recurrence of pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:992929. [PMID: 36313694 PMCID: PMC9614098 DOI: 10.3389/fonc.2022.992929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background The diagnostic performance and prognostic value of serum exosomal glypican 1 (GPC-1) in pancreatic ductal adenocarcinoma (PDAC) remain controversial. In this study, we detected serum exosomal GPC-1 using enzyme-linked immunosorbent assay (ELISA) and determined whether it serves as a predictor of diagnosis and recurrence for early-stage PDAC. Methods Serum samples were obtained from patients with 50 PDAC, 6 benign pancreatic tumor (BPT), or 9 chronic pancreatitis (CP) and 50 healthy controls (HCs). Serum exosomes were isolated using an exosome isolation kit. Exosomal and serum GPC-1 levels were measured using ELISA. The freeze–thaw process was carried out to analyze the stability of GPC-1. Receiver operating characteristic (ROC) analysis was employed to assess the diagnostic value of GPC-1. Kaplan–Meier and multivariate Cox analyses were used to evaluate the prognostic value of GPC-1. Results The average concentrations of serum exosomal and serum GPC-1 were 1.5 and 0.8 ng/ml, respectively. GPC-1 expression levels were stable under repeated freezing and thawing (d1-5 freeze–thaw cycles vs. d0 P > 0.05). Serum exosomal and serum GPC-1 were significantly elevated in patients with PDAC compared with HCs (P < 0.0001) but were slightly higher compared with that in patients with CP and BPT (P > 0.05). The expression levels of exosomal and serum GPC-1 were elevated 5 days after surgery in patients with PDAC, CP, and BPT (P < 0.05). Patients with high levels of exosomal and serum GPC-1 had a shorter relapse-free survival (RFS) (P = 0.006, and P = 0.010). Multivariate analyses showed that serum exosomal and serum GPC-1 were independent prognostic indicators for early RFS (P = 0.008, and P = 0.041). Conclusion ELISA is an effective and sensitive method to detect exosomal and serum GPC-1. The detection of GPC-1 was stable under repeated freezing and thawing cycles and could distinguish early-stage PDAC from HCs but not CP and BPT. Exosomal and serum GPC-1 may be good independent predictors of early recurrence in early-stage PDAC.
Collapse
Affiliation(s)
- Juan Zhao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Madi Guo
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yushuai Song
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shan Liu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ran Liao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yumin Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Yang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanlong Gu
- Department of interventional oncology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Xiaoyi Huang,
| |
Collapse
|
12
|
Unconventional secretion mediated by direct protein self-translocation across the plasma membranes of mammalian cells. Trends Biochem Sci 2022; 47:699-709. [PMID: 35490075 DOI: 10.1016/j.tibs.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022]
Abstract
In recent years, a surprisingly complex picture emerged about endoplasmic reticulum (ER)/Golgi-independent secretory pathways, and several routes have been discovered that differ with regard to their molecular mechanisms and machineries. Fibroblast growth factor 2 (FGF2) is secreted by a pathway of unconventional protein secretion (UPS) that is based on direct self-translocation across the plasma membrane. Building on previous research, a component of this process has been identified to be glypican-1 (GPC1), a GPI-anchored heparan sulfate proteoglycan located on cell surfaces. These findings not only shed light on the molecular mechanism underlying this process but also reveal an intimate relationship between FGF2 and GPC1 that might be of critical relevance for the prominent roles they both have in tumor progression and metastasis.
Collapse
|