1
|
Laan S, Del Castillo Alferez J, Cannegieter S, Fijnvandraat K, Kruip M, le Cessie S, Bierings R, Eikenboom J, van Moort I. DDAVP response and its determinants in bleeding disorders: a systematic review and meta-analysis. Blood 2025; 145:1814-1825. [PMID: 39854691 PMCID: PMC12060165 DOI: 10.1182/blood.2024026804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
ABSTRACT Desmopressin (1-desamino-8-d-arginine vasopressin [DDAVP]) can be used to prevent or stop bleeding. However, large interindividual variability is observed in DDAVP response and determinants are largely unknown. In this systematic review and meta-analysis, we aimed to identify the response to DDAVP and the factors that determine DDAVP response in patients. We included studies with patients with any bleeding disorder receiving DDAVP. First and second screening round and risk of bias assessment were performed by independent reviewers. The main outcome was proportion of patients with complete (factor level >50 U/dL) or partial (30-50 U/dL) response to DDAVP. Determinants of response including disease type, age, sex, von Willebrand factor (VWF) and factor VIII (FVIII) mutations, and baseline factor levels were investigated. In total, 591 articles were found and 103 were included. Of these, 71 articles (1772 patients) were suitable for the study's definition of response. Meta-analysis showed a pooled response proportion of 0.71 (0.64; 0.78) and a significant difference in response between disease subtypes. For hemophilia A, baseline FVIII activity (FVIII:C) was a borderline significant determinant of response. In patients with von Willebrand disease (VWD) type 1, VWF antigen (VWF:Ag), VWF activity, and FVIII:C were significant determinants. A large variation in response was observed for specific mutations in VWF and FVIII. Response to DDAVP varied between disease subtypes and was largely determined by the baseline levels of FVIII:C for hemophilia A and VWF:Ag for VWD. Our findings highlight the significant differences in response and emphasize the need for a standardized response definition and further research into response mechanisms.
Collapse
Affiliation(s)
- Sebastiaan Laan
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden Universiteit Medical Centre, Leiden, The Netherlands
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Suzanne Cannegieter
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden Universiteit Medical Centre, Leiden, The Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Karin Fijnvandraat
- Department of Molecular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
- Department of Pediatric Hematology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Marieke Kruip
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saskia le Cessie
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ruben Bierings
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden Universiteit Medical Centre, Leiden, The Netherlands
| | - Iris van Moort
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Cao Y, Zhang XF, Im W. Dynamics of a von Willebrand Factor A1 Autoinhibitory Module with O-Linked Glycans and Its Roles in Regulation of GPIbα Binding. J Phys Chem B 2025; 129:3796-3806. [PMID: 40183925 PMCID: PMC12010329 DOI: 10.1021/acs.jpcb.5c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
The von Willebrand factor (VWF), a multimeric plasma glycoprotein, binds to the platelet glycoprotein (GPIbα) to initiate the process of primary hemostasis as a response to blood flow alteration in the site of vascular injury. The GPIbα binding site located on the A1 domain of VWF is exposed during the activation of the VWF multimer when it changes from a coiled form to a thread-like, extended form. Though experimental studies have demonstrated that the autoinhibitory module (AIM) connected to the N-/C-termini of the A1 domain is a regulator of VWF activity, the molecular mechanism underlying the regulation of A1-GPIbα binding remains unclear. We modeled the structures of the A1 domain having full-length N-terminal AIM (NAIM) and C-terminal AIM (CAIM) with different types of O-linked glycans. The conventional and steered molecular dynamics simulations were conducted to investigate the dynamics of the AIM and O-glycans under different conditions and elucidate how they affect the binding of GPIbα. Our results indicate that the NAIM alone with no glycan is sufficient to shield the GPIbα binding site under static conditions. However, when the AIM is unfolded with external forces applied, the O-glycans on both NAIM and CAIM increase the shielding of the binding site. These findings suggest a potential mechanism by which the AIM and O-glycans regulate the interaction of the VWF A1 domain and GPIbα.
Collapse
Affiliation(s)
- Yiwei Cao
- Department
of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, Pennsylvania 18015, United States
| | - X. Frank Zhang
- Department
of Biomedical Engineering, University of
Massachusetts Amherst, 240 Thatcher Rd., Amherst, Massachusetts 01003, United States
| | - Wonpil Im
- Department
of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Tischer A, Moon-Tasson L, Auton M. Structure-resolved dynamics of type 2M von Willebrand disease. J Thromb Haemost 2025; 23:1215-1228. [PMID: 39756657 PMCID: PMC11972889 DOI: 10.1016/j.jtha.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Genetically determined amino acid substitutions in the platelet adhesive A1 domain alter von Willebrand factor's (VWF) platelet agglutination competence, resulting in both gain- (type 2B) and loss-of-function (type 2M) phenotypes of von Willebrand disease. Prior studies of variants in both phenotypes revealed defects in secondary structure that altered stability and folding of the domain. An intriguing observation was that loss of function arose from both misfolding of A1 and, in a few cases, hyperstabilization of the native structure. OBJECTIVES To fully understand the 2M phenotype, we thoroughly investigated the structure/function relationships of 15 additional type 2M variants and 2 polymorphisms in the A1 domain. METHODS These variants were characterized using circular dichroism, fluorescence, calorimetry, hydrogen-deuterium exchange mass spectrometry, surface plasmon resonance, and platelet adhesion under shear flow. RESULTS Six variants were natively folded, with 4 being hyperstabilized. Nine variants disordered A1, causing a loss in α-helical structure and unfolding enthalpy. GPIbα binding affinity and platelet adhesion dynamics were highly correlated to helical structure. Hydrogen-deuterium exchange resolved specific C-terminal secondary structure elements that differentially diminish the GPIbα binding affinity of A1. These localized structural perturbations were highly correlated to GPIbα binding affinity and shear-dependent platelet adhesion. CONCLUSION While hyperstabilized dynamics in A1 do impair stable platelet attachment to VWF under flow, variant-induced localized disorder in specific regions of the domain misfolds A1 and abrogates platelet adhesion. These 2 opposing conformational properties represent 2 structural classes of VWF that drive the loss-of-function phenotype that is type 2M von Willebrand disease.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
4
|
Yamada N, Tominaga K, Tominaga N, Kobayashi A, Niino C, Miyagi Y, Yamagata H, Nakagawa S. Glycosylation changes of vWF in circulating extracellular vesicles to predict depression. Sci Rep 2024; 14:29066. [PMID: 39580509 PMCID: PMC11585580 DOI: 10.1038/s41598-024-80507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
The clinical diagnosis of major depressive disorder (MDD) still depends on subjective information in terms of various symptoms regarding mood. Detecting the characterization of extracellular vesicles (EVs) in blood may result in finding a diagnostic biomarker that reflects the depressive stage of patients with MDD. Here, we report the results on the glycosylation pattern of enriched plasma EVs from patients with MDD. We compared glycosylation patterns by lectin blotting expressed in EVs isolated from the plasma of both patients with MDD and age-matched healthy control participants (HCs) using size-exclusion chromatography. The levels of Wheat germ agglutinin (WGA), N-acetyl glucosamine (GlcNAc), and N-Acetylneuraminic acid (Neu5Ac, sialic acid) - binding lectin, were significantly decreased in patients with MDD in the depressive state compared to HCs and in remission state. Furthermore, proteome analysis revealed that the von Willebrand factor (vWF) was a significant factor recognized by WGA. WGA-binding vWF antigen differentiated patients with MDD versus HCs and the same patients with MDD in a depressive versus remission state. In this study, the change patterns in the glycoproteins contained in plasma EVs support the usability of testing to identify patients who are at increased risk of depression during antidepressant treatment.
Collapse
Affiliation(s)
- Norihiro Yamada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Kana Tominaga
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan.
| | - Naoomi Tominaga
- Division of Clinical Laboratory Sciences, Department of Nursing and Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Chihiro Niino
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Yuta Miyagi
- Division of Clinical Laboratory Sciences, Department of Nursing and Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
- Kokoro Hospital Machida, 2140, Kamioyamadamachi, Machida, 194-0201, Tokyo, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| |
Collapse
|
5
|
Machha V, Tischer A, Moon-Tasson L, Tange J, Santiago-Davis A, Pruthi R, Chen D, Maher LJ, Auton M. Conformation-specific RNA aptamers for phenotypic distinction between normal von Willebrand factor and type 2B von Willebrand disease. NAR MOLECULAR MEDICINE 2024; 1:ugae021. [PMID: 39719968 PMCID: PMC11664255 DOI: 10.1093/narmme/ugae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
The A1 domain in Von Willebrand Factor (VWF) initiates coagulation through binding to platelet glycoprotein GPIbα receptors. Von Willebrand Disease (VWD)-Mutations in A1 that either impair (type 2M) or enhance (type 2B) platelet adhesion to VWF can locally destabilize and even misfold the domain. We leveraged misfolding in the gain-of-function type 2B VWD phenotype as a target, distinct from the normal conformation. Two nuclease-resistant 2'-fluoropyrimidine RNA aptamers were selected to discriminate normal A1 domains from a type 2B V1314D A1 variant in a glycosylated A1A2A3 tri-domain VWF-fragment. Two aptamers, W9 and V1, were isolated that selectively recognize, bind, and inhibit the A1-GPIbα interaction with WT A1A2A3 and V1314D A1A2A3, respectively. These aptamers were tested against their respective recombinant targets, plasma VWF, VWF concentrates, and patient plasma with the heterozygous type 2B VWD R1306W variant using clinical assays, surface plasmon resonance and inhibition assays of platelet adhesion to recombinant A1 and A1A2A3 domains under shear stress. The specificity of W9 and V1 aptamers confirms that pathological conformations of VWD Type 2B proteins are different from normal VWF. The availability of aptamers that distinguish normal plasma-derived VWF from VWD suggests potential applicability in clinical diagnosis of severe gain-of-function phenotypes.
Collapse
Affiliation(s)
- Venkata R Machha
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Alexander Tischer
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Laurie Moon-Tasson
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| | - Julie Tange
- Special Coagulation Laboratory, Mayo Medical Laboratories, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Annyoceli Santiago-Davis
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Rajiv K Pruthi
- Division of Hematopathology, Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Matthew Auton
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Arce NA, Markham-Lee Z, Liang Q, Najmudin S, Legan ER, Dean G, Su AJ, Wilson MS, Sidonio RF, Lollar P, Emsley J, Li R. Conformational activation and inhibition of von Willebrand factor by targeting its autoinhibitory module. Blood 2024; 143:1992-2004. [PMID: 38290109 PMCID: PMC11103182 DOI: 10.1182/blood.2023022038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
ABSTRACT Activation of von Willebrand factor (VWF) is a tightly controlled process governed primarily by local elements around its A1 domain. Recent studies suggest that the O-glycosylated sequences flanking the A1 domain constitute a discontinuous and force-sensitive autoinhibitory module (AIM), although its extent and conformation remains controversial. Here, we used a targeted screening strategy to identify 2 groups of nanobodies. One group, represented by clone 6D12, is conformation insensitive and binds the N-terminal AIM (NAIM) sequence that is distal from A1; 6D12 activates human VWF and induces aggregation of platelet-rich plasma at submicromolar concentrations. The other group, represented by clones Nd4 and Nd6, is conformation sensitive and targets the C-terminal AIM (CAIM). Nd4 and Nd6 inhibit ristocetin-induced platelet aggregation and reduce VWF-mediated platelet adhesion under flow. A crystal structure of Nd6 in complex with AIM-A1 shows a novel conformation of both CAIM and NAIM that are primed to interact, providing a model of steric hindrance stabilized by the AIM as the mechanism for regulating GPIbα binding to VWF. Hydrogen-deuterium exchange mass spectrometry analysis shows that binding of 6D12 induces the exposure of the GPIbα-binding site in the A1 domain, but binding of inhibitory nanobodies reduces it. Overall, these results suggest that the distal portion of NAIM is involved in specific interactions with CAIM, and binding of nanobodies to the AIM could either disrupt its conformation to activate VWF or stabilize its conformation to upkeep VWF autoinhibition. These reported nanobodies could facilitate future studies of VWF functions and related pathologies.
Collapse
Affiliation(s)
- Nicholas A. Arce
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Zoe Markham-Lee
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Qian Liang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shabir Najmudin
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Emily R. Legan
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Gabrielle Dean
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Ally J. Su
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Moriah S. Wilson
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Robert F. Sidonio
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Pete Lollar
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
7
|
Javitt G, Yeshaya N, Khmelnitsky L, Fass D. Assembly of von Willebrand factor tubules with in vivo helical parameters requires A1 domain insertion. Blood 2022; 140:2835-2843. [PMID: 36179246 PMCID: PMC10653096 DOI: 10.1182/blood.2022017153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
The von Willebrand factor (VWF) glycoprotein is stored in tubular form in Weibel-Palade bodies (WPBs) before secretion from endothelial cells into the bloodstream. The organization of VWF in the tubules promotes formation of covalently linked VWF polymers and enables orderly secretion without polymer tangling. Recent studies have described the high-resolution structure of helical tubular cores formed in vitro by the D1D2 and D'D3 amino-terminal protein segments of VWF. Here we show that formation of tubules with the helical geometry observed for VWF in intracellular WPBs requires also the VWA1 (A1) domain. We reconstituted VWF tubules from segments containing the A1 domain and discovered it to be inserted between helical turns of the tubule, altering helical parameters and explaining the increased robustness of tubule formation when A1 is present. The conclusion from this observation is that the A1 domain has a direct role in VWF assembly, along with its known activity in hemostasis after secretion.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Yeshaya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lev Khmelnitsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|