1
|
Xu Ying B, Zwart MF, Pulver SR. Context-dependent coordination of movement in Tribolium castaneum larvae. J Exp Biol 2025; 228:jeb250015. [PMID: 40066505 PMCID: PMC12045640 DOI: 10.1242/jeb.250015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Insect pests such as the red flour beetle (Tribolium castaneum) destroy up to 20% of stored grain products worldwide, making them a significant threat to food security. Their success hinges upon adapting their movements to unpredictable, heterogeneous environments like flour. Tribolium is well developed as a genetic model system; however, little is known about its natural locomotion and how its nervous system coordinates adaptive movement. Here, we employed videographic whole-animal and leg tracking to assess how Tribolium larvae locomote over different substrates and analyse their gait kinematics across speeds. Unlike many hexapods, larvae employed a bilaterally symmetric, posterior-to-anterior wave gait during fast locomotion. At slower speeds, coordination within thoracic segments was disrupted, although intersegmental coordination remained intact. Moreover, larvae used terminal abdominal structures (pygopods) to support challenging movements, such as climbing overhangs. Pygopod placement coincided with leg swing initiation, suggesting a stabilising role as adaptive anchoring devices. Surgically lesioning the connective between thoracic and abdominal ganglia impaired pygopod engagement and led to escalating impairments in flat-terrain locomotion, climbing and tunnelling. These results suggest that effective movement in Tribolium larvae requires thoracic-abdominal coordination, and that larval gait and limb recruitment is context dependent. Our work provides the first kinematic analysis of Tribolium larval locomotion and gives insights into its neural control, creating a foundation for future motor control research in a genetically tractable beetle that jeopardises global food security.
Collapse
Affiliation(s)
- Bella Xu Ying
- Institute of Behavioural and Neural Sciences, University of St Andrews, St Andrews KY16 9JP, UK
- Centre of Biophotonics, University of St Andrews, St Andrews KY16 9JP, UK
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Maarten F. Zwart
- Institute of Behavioural and Neural Sciences, University of St Andrews, St Andrews KY16 9JP, UK
- Centre of Biophotonics, University of St Andrews, St Andrews KY16 9JP, UK
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Stefan R. Pulver
- Institute of Behavioural and Neural Sciences, University of St Andrews, St Andrews KY16 9JP, UK
- Centre of Biophotonics, University of St Andrews, St Andrews KY16 9JP, UK
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| |
Collapse
|
2
|
Lehman M, Barré C, Hasan MA, Flament B, Autran S, Dhiman N, Soba P, Masson JB, Jovanic T. Neural circuits underlying context-dependent competition between defensive actions in Drosophila larvae. Nat Commun 2025; 16:1120. [PMID: 39875414 PMCID: PMC11775277 DOI: 10.1038/s41467-025-56185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
To ensure their survival, animals must be able to respond adaptively to threats within their environment. However, the precise neural circuit mechanisms that underlie flexible defensive behaviors remain poorly understood. Using neuronal manipulations, machine learning-based behavioral detection, electron microscopy (EM) connectomics and calcium imaging in Drosophila larvae, we map second-order interneurons that are differentially involved in the competition between defensive actions in response to competing aversive cues. We find that mechanosensory stimulation inhibits escape behaviors in favor of startle behaviors by influencing the activity of escape-promoting second-order interneurons. Stronger activation of those neurons inhibits startle-like behaviors. This suggests that competition between startle and escape behaviors occurs at the level of second-order interneurons. Finally, we identify a pair of descending neurons that promote startle behaviors and could modulate the escape sequence. Taken together, these results characterize the pathways involved in startle and escape competition, which is modulated by the sensory context.
Collapse
Affiliation(s)
- Maxime Lehman
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France
| | - Chloé Barré
- Institut Pasteur, Université Paris Cité, IHU reConnect, IHU ICE, CNRS UMR 3571, Decision and Bayesian Computation, 75015, Paris, France
- Epiméthée, INRIA, 75013, Paris, France
| | - Md Amit Hasan
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France
| | - Benjamin Flament
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France
| | - Sandra Autran
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France
| | - Neena Dhiman
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Peter Soba
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Jean-Baptiste Masson
- Institut Pasteur, Université Paris Cité, IHU reConnect, IHU ICE, CNRS UMR 3571, Decision and Bayesian Computation, 75015, Paris, France
- Epiméthée, INRIA, 75013, Paris, France
| | - Tihana Jovanic
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, 91400, Saclay, France.
| |
Collapse
|
3
|
Tagorti G, Yalçın B, Güneş M, Burgazlı AY, Kuruca T, Cihanoğlu N, Akarsu E, Kaya N, Marcos R, Kaya B. Alcohol-free synthesis, biological assessment, in vivo toxicological evaluation, and in silico analysis of novel silane quaternary ammonium compounds differing in structure and chain length as promising disinfectants. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133470. [PMID: 38246053 DOI: 10.1016/j.jhazmat.2024.133470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
Quaternary ammonium compounds (QACs) are commonly used as disinfectants for industrial, medical, and residential applications. However, adverse health outcomes have been reported. Therefore, biocompatible disinfectants must be developed to reduce these adverse effects. In this context, QACs with various alkyl chain lengths (C12-C18) were synthesized by reacting QACs with the counterion silane. The antimicrobial activities of the novel compounds against four strains of microorganisms were assessed. Several in vivo assays were conducted on Drosophila melanogaster to determine the toxicological outcomes of Si-QACs, followed by computational analyses (molecular docking, simulation, and prediction of skin sensitization). The in vivo results were combined using a cheminformatics approach to understand the descriptors responsible for the safety of Si-QAC. Si-QAC-2 was active against all tested bacteria, with minimal inhibitory concentrations ranging from 13.65 to 436.74 ppm. Drosophila exposed to Si-QAC-2 have moderate-to-low toxicological outcomes. The molecular weight, hydrophobicity/lipophilicity, and electron diffraction properties were identified as crucial descriptors for ensuring the safety of the Si-QACs. Furthermore, Si-QAC-2 exhibited good stability and notable antiviral potential with no signs of skin sensitization. Overall, Si-QAC-2 (C14) has the potential to be a novel disinfectant.
Collapse
Affiliation(s)
- Ghada Tagorti
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Tuğçe Kuruca
- Department of Chemistry, Akdeniz University, Antalya, Turkey
| | | | - Esin Akarsu
- Department of Chemistry, Akdeniz University, Antalya, Turkey
| | - Nuray Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
4
|
Yu J, Dancausse S, Paz M, Faderin T, Gaviria M, Shomar JW, Zucker D, Venkatachalam V, Klein M. Continuous, long-term crawling behavior characterized by a robotic transport system. eLife 2023; 12:e86585. [PMID: 37535068 PMCID: PMC10400072 DOI: 10.7554/elife.86585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Detailed descriptions of behavior provide critical insight into the structure and function of nervous systems. In Drosophila larvae and many other systems, short behavioral experiments have been successful in characterizing rapid responses to a range of stimuli at the population level. However, the lack of long-term continuous observation makes it difficult to dissect comprehensive behavioral dynamics of individual animals and how behavior (and therefore the nervous system) develops over time. To allow for long-term continuous observations in individual fly larvae, we have engineered a robotic instrument that automatically tracks and transports larvae throughout an arena. The flexibility and reliability of its design enables controlled stimulus delivery and continuous measurement over developmental time scales, yielding an unprecedented level of detailed locomotion data. We utilize the new system's capabilities to perform continuous observation of exploratory search behavior over a duration of 6 hr with and without a thermal gradient present, and in a single larva for over 30 hr. Long-term free-roaming behavior and analogous short-term experiments show similar dynamics that take place at the beginning of each experiment. Finally, characterization of larval thermotaxis in individuals reveals a bimodal distribution in navigation efficiency, identifying distinct phenotypes that are obfuscated when only analyzing population averages.
Collapse
Affiliation(s)
- James Yu
- Department of Physics, Northeastern UniversityBostonUnited States
| | - Stephanie Dancausse
- Department of Physics and Department of Biology, University of MiamiCoral GablesUnited States
| | - Maria Paz
- Department of Physics, Northeastern UniversityBostonUnited States
| | - Tolu Faderin
- Department of Physics, Northeastern UniversityBostonUnited States
| | - Melissa Gaviria
- Department of Physics and Department of Biology, University of MiamiCoral GablesUnited States
| | - Joseph W Shomar
- Department of Physics and Department of Biology, University of MiamiCoral GablesUnited States
| | | | | | - Mason Klein
- Department of Physics and Department of Biology, University of MiamiCoral GablesUnited States
| |
Collapse
|
5
|
Amanullah A, Arzoo S, Aslam A, Qureshi IW, Hussain M. Inbreeding-Driven Innate Behavioral Changes in Drosophila melanogaster. BIOLOGY 2023; 12:926. [PMID: 37508357 PMCID: PMC10376054 DOI: 10.3390/biology12070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Drosophila melanogaster has long been used to demonstrate the effect of inbreeding, particularly in relation to reproductive fitness and stress tolerance. In comparison, less attention has been given to exploring the influence of inbreeding on the innate behavior of D. melanogaster. In this study, multiple replicates of six different types of crosses were set in pair conformation of the laboratory-maintained wild-type D. melanogaster. This resulted in progeny with six different levels of inbreeding coefficients. Larvae and adult flies of varied inbreeding coefficients were subjected to different behavioral assays. In addition to the expected inbreeding depression in the-egg to-adult viability, noticeable aberrations were observed in the crawling and phototaxis behaviors of larvae. Negative geotactic behavior as well as positive phototactic behavior of the flies were also found to be adversely affected with increasing levels of inbreeding. Interestingly, positively phototactic inbred flies demonstrated improved learning compared to outbred flies, potentially the consequence of purging. Flies with higher levels of inbreeding exhibited a delay in the manifestation of aggression and courtship. In summary, our findings demonstrate that inbreeding influences the innate behaviors in D. melanogaster, which in turn may affect the overall biological fitness of the flies.
Collapse
Affiliation(s)
- Anusha Amanullah
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Shabana Arzoo
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Ayesha Aslam
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Iffat Waqar Qureshi
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Fly Research Lab and Stock Center, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| |
Collapse
|
6
|
Yu J, Dancausse S, Paz M, Faderin T, Gaviria M, Shomar J, Zucker D, Venkatachalam V, Klein M. Continuous, long-term crawling behavior characterized by a robotic transport system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530235. [PMID: 36909608 PMCID: PMC10002653 DOI: 10.1101/2023.02.27.530235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Detailed descriptions of behavior provide critical insight into the structure and function of nervous systems. In Drosophila larvae and many other systems, short behavioral experiments have been successful in characterizing rapid responses to a range of stimuli at the population level. However, the lack of long-term continuous observation makes it difficult to dissect comprehensive behavioral dynamics of individual animals and how behavior (and therefore the nervous system) develops over time. To allow for long-term continuous observations in individual fly larvae, we have engineered a robotic instrument that automatically tracks and transports larvae throughout an arena. The flexibility and reliability of its design enables controlled stimulus delivery and continuous measurement over developmental time scales, yielding an unprecedented level of detailed locomotion data. We utilize the new system’s capabilities to perform continuous observation of exploratory behavior over a duration of six hours with and without a thermal gradient present, and in a single larva for over 30 hours. Long-term free-roaming behavior and analogous short-term experiments show similar dynamics that take place at the beginning of each experiment. Finally, characterization of larval thermotaxis in individuals reveals a bimodal distribution in navigation efficiency, identifying distinct phenotypes that are obfuscated when only analyzing population averages.
Collapse
Affiliation(s)
- James Yu
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Stephanie Dancausse
- Department of Physics and Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| | - Maria Paz
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Tolu Faderin
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Melissa Gaviria
- Department of Physics and Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| | - Joseph Shomar
- Department of Physics and Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| | | | | | - Mason Klein
- Department of Physics and Department of Biology, University of Miami, Coral Gables, FL 33146 USA
| |
Collapse
|