1
|
Marketaki SZ, Berio F, Di Santo V. Compensatory sensory mechanisms in naïve blind cavefish navigating novel environments after lateral line ablation. Comp Biochem Physiol A Mol Integr Physiol 2025; 305:111863. [PMID: 40222681 DOI: 10.1016/j.cbpa.2025.111863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Fishes navigating complex aquatic environments rely on various sensory systems, primarily the lateral line system and vision, to guide their movements. One interesting example is the Mexican blind cavefish (Astyanax mexicanus). This fish relies on the lateral line system as it navigates through the environment without the aid of sight. It is unclear, however, how they might navigate through a novel environment when the lateral line is not functional. In this study, we used high-speed videography to quantify whether naïve blind cavefish alter locomotor behavior, navigation patterns, and the use of body and fins to explore a novel environment with obstacles when the lateral line is ablated. Blind cavefish with an intact lateral line demonstrated deliberate slower exploratory movements and navigated around obstacles with fewer touching events. Conversely, fish with ablated lateral line exhibited increased speed to potentially improve flow sensing. Fish with an ablated lateral line also touched obstacles more often, suggesting a reliance on fin and snout mechanoreception for navigation. These results show the blind cavefish have compensatory sensory mechanisms to navigate novel environments when their major sensory system is not functioning.
Collapse
Affiliation(s)
| | - Fidji Berio
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Valentina Di Santo
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Blin M, Valay L, Kuratko M, Pavie M, Rétaux S. The evolution of olfactory sensitivity, preferences, and behavioral responses in Mexican cavefish is influenced by fish personality. eLife 2024; 12:RP92861. [PMID: 38832493 PMCID: PMC11149931 DOI: 10.7554/elife.92861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Animals are adapted to their natural habitats and lifestyles. Their brains perceive the external world via their sensory systems, compute information together with that of internal states and autonomous activity, and generate appropriate behavioral outputs. However, how do these processes evolve across evolution? Here, focusing on the sense of olfaction, we have studied the evolution in olfactory sensitivity, preferences, and behavioral responses to six different food-related amino acid odors in the two eco-morphs of the fish Astyanax mexicanus. To this end, we have developed a high-throughput behavioral setup and pipeline of quantitative and qualitative behavior analysis, and we have tested 489 six-week-old Astyanax larvae. The blind, dark-adapted morphs of the species showed markedly distinct basal swimming patterns and behavioral responses to odors, higher olfactory sensitivity, and a strong preference for alanine, as compared to their river-dwelling eyed conspecifics. In addition, we discovered that fish have an individual 'swimming personality', and that this personality influences their capability to respond efficiently to odors and find the source. Importantly, the personality traits that favored significant responses to odors were different in surface fish and cavefish. Moreover, the responses displayed by second-generation cave × surface F2 hybrids suggested that olfactory-driven behavior and olfactory sensitivity is a quantitative genetic trait. Our findings show that olfactory processing has rapidly evolved in cavefish at several levels: detection threshold, odor preference, and foraging behavior strategy. Cavefish is therefore an outstanding model to understand the genetic, molecular, and neurophysiological basis of sensory specialization in response to environmental change.
Collapse
Affiliation(s)
- Maryline Blin
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Louis Valay
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Manon Kuratko
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Marie Pavie
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| |
Collapse
|
3
|
Chen B, Dai W, Li X, Mao T, Liu Y, Pie MR, Yang J, Meegaskumbura M. Wall-following - Phylogenetic context of an enhanced behaviour in stygomorphic Sinocyclocheilus (Cypriniformes: Cyprinidae) cavefishes. Ecol Evol 2024; 14:e11575. [PMID: 38932953 PMCID: PMC11199845 DOI: 10.1002/ece3.11575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
With 75 known species, the freshwater fish genus Sinocyclocheilus is the largest cavefish radiation in the world and shows multiple adaptations for cave-dwelling (stygomorphic adaptations), which include a range of traits such as eye degeneration (normal-eyed, micro-eyed and eyeless), depigmentation of skin, and in some species, the presence of "horns". Their behavioural adaptations to subterranean environments, however, are poorly understood. Wall-following (WF) behaviour, where an organism remains in close contact with the boundary demarcating its habitat when in the dark, is a peculiar behaviour observed in a wide range of animals and is enhanced in cave dwellers. Hence, we hypothesise that wall-following is also present in Sinocyclocheilus, possibly enhanced in eyeless species compared to eye bearing (normal-/micro-eyed species). Using 13 species representative of Sinocyclocheilus radiation and eye morphs, we designed a series of assays, based on pre-existing methods for Astyanax mexicanus behavioural experiments, to examine wall-following behaviour under three conditions. Our results indicate that eyeless species exhibit significantly enhanced intensities of WF compared to normal-eyed species, with micro-eyed forms demonstrating intermediate intensities in the WF distance. Using a mtDNA based dated phylogeny (chronogram with four clades A-D), we traced the degree of WF of these forms to outline common patterns. We show that the intensity of WF behaviour is higher in the subterranean clades compared to clades dominated by normal-eyed free-living species. We also found that eyeless species are highly sensitive to vibrations, whereas normal-eyed species are the least sensitive. Since WF behaviour is presented to some degree in all Sinocyclocheilus species, and given that these fishes evolved in the late Miocene, we identify this behaviour as being ancestral with WF enhancement related to cave occupation. Results from this diversification-scale study of cavefish behaviour suggest that enhanced wall-following behaviour may be a convergent trait across all stygomorphic lineages.
Collapse
Affiliation(s)
- Bing Chen
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of ForestryGuangxi UniversityNanningChina
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life SciencesFudan UniversityShanghaiChina
| | - Wen‐Zhang Dai
- School of Life Science and Institute of Wetland EcologyNanjing UniversityNanjingChina
| | - Xiang‐Lin Li
- State Key Laboratory of Efficient Production of Forest ResourcesSchool of Ecology and Nature Conservation, Beijing Forestry UniversityBeijingChina
| | - Ting‐Ru Mao
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of ForestryGuangxi UniversityNanningChina
| | - Ye‐Wei Liu
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of ForestryGuangxi UniversityNanningChina
| | - Marcio R. Pie
- Biology DepartmentEdge Hill UniversityOrmskirkLancashireUK
| | - Jian Yang
- Key Laboratory of Environment Change and Resource Use, Beibu GulfNanning Normal UniversityNanningGuangxiChina
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of ForestryGuangxi UniversityNanningChina
| |
Collapse
|
4
|
Policarpo M, Legendre L, Germon I, Lafargeas P, Espinasa L, Rétaux S, Casane D. The nature and distribution of putative non-functional alleles suggest only two independent events at the origins of Astyanax mexicanus cavefish populations. BMC Ecol Evol 2024; 24:41. [PMID: 38556874 PMCID: PMC10983663 DOI: 10.1186/s12862-024-02226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Several studies suggested that cavefish populations of Astyanax mexicanus settled during the Late Pleistocene. This implies that the cavefish's most conspicuous phenotypic changes, blindness and depigmentation, and more cryptic characters important for cave life, evolved rapidly. RESULTS Using the published genomes of 47 Astyanax cavefish from la Cueva de El Pachón, El Sótano de la Tinaja, La Cueva Chica and El Sótano de Molino, we searched for putative loss-of-function mutations in previously defined sets of genes, i.e., vision, circadian clock and pigmentation genes. Putative non-functional alleles for four vision genes were identified. Then, we searched genome-wide for putative non-functional alleles in these four cave populations. Among 512 genes with segregating putative non-functional alleles in cavefish that are absent in surface fish, we found an enrichment in visual perception genes. Among cavefish populations, different levels of shared putative non-functional alleles were found. Using a subset of 12 genes for which putative loss-of-function mutations were found, we extend the analysis of shared pseudogenes to 11 cave populations. Using a subset of six genes for which putative loss-of-function mutations were found in the El Sótano del Toro population, where extensive hybridization with surface fish occurs, we found a correlation between the level of eye regression and the amount of putative non-functional alleles. CONCLUSIONS We confirm that very few putative non-functional alleles are present in a large set of vision genes, in accordance with the recent origin of Astyanax mexicanus cavefish. Furthermore, the genome-wide analysis indicates an enrichment of putative loss-of-function alleles in genes with vision-related GO-terms, suggesting that visual perception may be the function chiefly impacted by gene losses related to the shift from a surface to a cave environment. The geographic distribution of putative loss-of-function alleles newly suggests that cave populations from Sierra de Guatemala and Sierra de El Abra share a common origin, albeit followed by independent evolution for a long period. It also supports that populations from the Micos area have an independent origin. In El Sótano del Toro, the troglomorphic phenotype is maintained despite massive introgression of the surface genome.
Collapse
Affiliation(s)
- Maxime Policarpo
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement Et Écologie, 91190, Gif-Sur-Yvette, France
- Present Address: Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Laurent Legendre
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement Et Écologie, 91190, Gif-Sur-Yvette, France
| | - Isabelle Germon
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement Et Écologie, 91190, Gif-Sur-Yvette, France
| | - Philippe Lafargeas
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement Et Écologie, 91190, Gif-Sur-Yvette, France
| | - Luis Espinasa
- School of Science, Marist College, Poughkeepsie, NY, USA
| | - Sylvie Rétaux
- Institut de Neuroscience Paris-Saclay, Université Paris-Saclay and CNRS, 91400, Saclay, France.
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement Et Écologie, 91190, Gif-Sur-Yvette, France.
- Université Paris Cité, UFR Sciences du Vivant, 75013, Paris, France.
| |
Collapse
|
5
|
Rodríguez‐Morales R. Sensing in the dark: Constructive evolution of the lateral line system in blind populations of Astyanax mexicanus. Ecol Evol 2024; 14:e11286. [PMID: 38654714 PMCID: PMC11036076 DOI: 10.1002/ece3.11286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Cave-adapted animals evolve a suite of regressive and constructive traits that allow survival in the dark. Most studies aiming at understanding cave animal evolution have focused on the genetics and environmental underpinnings of regressive traits, with special emphasis on vision loss. Possibly as a result of vision loss, other non-visual sensory systems have expanded and compensated in cave species. For instance, in many cave-dwelling fish species, including the blind cavefish of the Mexican tetra, Astyanax mexicanus, a major non-visual mechanosensory system called the lateral line, compensated for vision loss through morphological expansions. While substantial work has shed light on constructive adaptation of this system, there are still many open questions regarding its developmental origin, synaptic plasticity, and overall adaptive value. This review provides a snapshot of the current state of knowledge of lateral line adaption in A. mexicanus, with an emphasis on anatomy, synaptic plasticity, and behavior. Multiple open avenues for future research in this system, and how these can be leveraged as tools for both evolutionary biology and evolutionary medicine, are discussed.
Collapse
Affiliation(s)
- Roberto Rodríguez‐Morales
- Department of Anatomy & Neurobiology, School of MedicineUniversity of Puerto RicoSan JuanPuerto Rico
| |
Collapse
|
6
|
Ding SS, Fox JL, Gordus A, Joshi A, Liao JC, Scholz M. Fantastic beasts and how to study them: rethinking experimental animal behavior. J Exp Biol 2024; 227:jeb247003. [PMID: 38372042 PMCID: PMC10911175 DOI: 10.1242/jeb.247003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Humans have been trying to understand animal behavior at least since recorded history. Recent rapid development of new technologies has allowed us to make significant progress in understanding the physiological and molecular mechanisms underlying behavior, a key goal of neuroethology. However, there is a tradeoff when studying animal behavior and its underlying biological mechanisms: common behavior protocols in the laboratory are designed to be replicable and controlled, but they often fail to encompass the variability and breadth of natural behavior. This Commentary proposes a framework of 10 key questions that aim to guide researchers in incorporating a rich natural context into their experimental design or in choosing a new animal study system. The 10 questions cover overarching experimental considerations that can provide a template for interspecies comparisons, enable us to develop studies in new model organisms and unlock new experiments in our quest to understand behavior.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abhilasha Joshi
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA 94158, USA
| | - James C. Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
| |
Collapse
|
7
|
Chen B, Mao T, Liu Y, Dai W, Li X, Rajput AP, Pie MR, Yang J, Gross JB, Meegaskumbura M. Sensory evolution in a cavefish radiation: patterns of neuromast distribution and associated behaviour in Sinocyclocheilus (Cypriniformes: Cyprinidae). Proc Biol Sci 2022; 289:20221641. [PMID: 36476002 PMCID: PMC9554722 DOI: 10.1098/rspb.2022.1641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023] Open
Abstract
The genus Sinocyclocheilus, comprising a large radiation of freshwater cavefishes, are well known for their presence of regressive features (e.g. variable eye reduction). Fewer constructive features are known, such as the expansion of the lateral line system (LLS), which is involved in detecting water movements. The precise relationship between LLS expansion and cave adaptation is not well understood. Here, we examine morphology and LLS-mediated behaviour in Sinocyclocheilus species characterized by broad variation in eye size, habitat and geographical distribution. Using live-staining techniques and automated behavioural analyses, we examined 26 Sinocyclocheilus species and quantified neuromast organ number, density and asymmetry within a phylogenetic context. We then examined how these morphological features may relate to wall-following, an established cave-associated behaviour mediated by the lateral line. We show that most species demonstrated laterality (i.e. asymmetry) in neuromast organs on the head, often biased to the right. We also found that wall-following behaviour was distinctive, particularly among eyeless species. Patterns of variation in LLS appear to correlate with the degree of eye loss, as well as geographical distribution. This work reveals that constructive LLS evolution is convergent across distant cavefish taxa and may mediate asymmetric behavioural features that enable survival in stark subterranean microenvironments.
Collapse
Affiliation(s)
- Bing Chen
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Tingru Mao
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Yewei Liu
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Wenzhang Dai
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing 210000, People's Republic of China
| | - Xianglin Li
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Amrapali P. Rajput
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| | - Marcio R. Pie
- Biology Department, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| | - Jian Yang
- Key Laboratory of Environment Change and Resource Use, Beibu Gulf, Nanning Normal University, Nanning, Guangxi, People's Republic of China
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati OH 45221, USA
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|