1
|
Nussinov R. Pioneer in Molecular Biology: Conformational Ensembles in Molecular Recognition, Allostery, and Cell Function. J Mol Biol 2025:169044. [PMID: 40015370 DOI: 10.1016/j.jmb.2025.169044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
In 1978, for my PhD, I developed the efficient O(n3) dynamic programming algorithm for the-then open problem of RNA secondary structure prediction. This algorithm, now dubbed the "Nussinov algorithm", "Nussinov plots", and "Nussinov diagrams", is still taught across Europe and the U.S. As sequences started coming out in the 1980s, I started seeking genome-encoded functional signals, later becoming a bioinformatics trend. In the early 1990s I transited to proteins, co-developing a powerful computer vision-based docking algorithm. In the late 1990s, I proposed the foundational role of conformational ensembles in molecular recognition and allostery. At the time, conformational ensembles and free energy landscapes were viewed as physical properties of proteins but were not associated with function. The classical view of molecular recognition and binding was based on only two conformations captured by crystallography: open and closed. I proposed that all conformational states preexist. Proteins always have not one folded form-nor two-but many folded forms. Thus, rather than inducing fit, binding can work by shifting the ensembles between states, and this shifting, or redistributing the ensembles to maintain equilibrium, is the origin of the allosteric effect and protein, thus cell, function. This transformative paradigm impacted community views in allosteric drug design, catalysis, and regulation. Dynamic conformational ensemble shifts are now acknowledged as the origin of recognition, allostery, and signaling, underscoring that conformational ensembles-not proteins-are the workhorses of the cell, pioneering the fundamental idea that dynamic ensembles are the driving force behind cellular processes. Nussinov was recognized as pioneer in molecular biology by JMB.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
2
|
Khattab S, Berisha A, Baran N, Piccaluga PP. Rat Sarcoma Virus Family Genes in Acute Myeloid Leukemia: Pathogenetic and Clinical Implications. Biomedicines 2025; 13:202. [PMID: 39857784 PMCID: PMC11760468 DOI: 10.3390/biomedicines13010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Acute myeloid leukemias (AMLs) comprise a group of genetically heterogeneous hematological malignancies that result in the abnormal growth of leukemic cells and halt the maturation process of normal hematopoietic stem cells. Despite using molecular and cytogenetic risk classification to guide treatment decisions, most AML patients survive for less than five years. A deeper comprehension of the disease's biology and the use of new, targeted therapy approaches could potentially increase cure rates. RAS oncogene mutations are common in AML patients, being observed in about 15-20% of AML cases. Despite extensive efforts to find targeted therapy for RAS-mutated AMLs, no effective and tolerable RAS inhibitor has received approval for use against AMLs. The frequency of RAS mutations increases in the context of AMLs' chemoresistance; thus, novel anti-RAS strategies to overcome drug resistance and improve patients' therapy responses and overall survival are the need of the hour. In this article, we aim to update the current knowledge on the role of RAS mutations and anti-RAS strategies in AML treatments.
Collapse
Affiliation(s)
- Shaimaa Khattab
- Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
- Medical Research Institute, Alexandria University, Alexandria 21526, Egypt
| | - Adriatik Berisha
- Division of Hematology, University of Pristina, 10000 Pristina, Kosovo
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Section of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| |
Collapse
|
3
|
Jalalypour F, Howard RJ, Lindahl E. Allosteric Cholesterol Site in Glycine Receptors Characterized through Molecular Simulations. J Phys Chem B 2024; 128:4996-5007. [PMID: 38747451 PMCID: PMC11129184 DOI: 10.1021/acs.jpcb.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024]
Abstract
Glycine receptors are pentameric ligand-gated ion channels that conduct chloride ions across postsynaptic membranes to facilitate fast inhibitory neurotransmission. In addition to gating by the glycine agonist, interactions with lipids and other compounds in the surrounding membrane environment modulate their function, but molecular details of these interactions remain unclear, in particular, for cholesterol. Here, we report coarse-grained simulations in a model neuronal membrane for three zebrafish glycine receptor structures representing apparent resting, open, and desensitized states. We then converted the systems to all-atom models to examine detailed lipid interactions. Cholesterol bound to the receptor at an outer-leaflet intersubunit site, with a preference for the open and desensitized versus resting states, indicating that it can bias receptor function. Finally, we used short atomistic simulations and iterative amino acid perturbations to identify residues that may mediate allosteric gating transitions. Frequent cholesterol contacts in atomistic simulations clustered with residues identified by perturbation analysis and overlapped with mutations influencing channel function and pathology. Cholesterol binding at this site was also observed in a recently reported pig heteromeric glycine receptor. These results indicate state-dependent lipid interactions relevant to allosteric transitions of glycine receptors, including specific amino acid contacts applicable to biophysical modeling and pharmaceutical design.
Collapse
Affiliation(s)
- Farzaneh Jalalypour
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | - Rebecca J. Howard
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| | - Erik Lindahl
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| |
Collapse
|
4
|
Baumann P, Jin Y. Far-reaching effects of tyrosine64 phosphorylation on Ras revealed with BeF 3- complexes. Commun Chem 2024; 7:19. [PMID: 38297137 PMCID: PMC10830474 DOI: 10.1038/s42004-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Tyrosine phosphorylation on Ras by Src kinase is known to uncouple Ras from upstream regulation and downstream communication. However, the mechanisms by which phosphorylation modulates these interactions have not been detailed. Here, the major mono-phosphorylation level on tyrosine64 is quantified by 31P NMR and mutagenesis. Crystal structures of unphosphorylated and tyrosine64-phosphorylated Ras in complex with a BeF3- ground state analogue reveal "closed" Ras conformations very different from those of the "open" conformations previously observed for non-hydrolysable GTP analogue structures of Ras. They deliver new mechanistic and conformational insights into intrinsic GTP hydrolysis. Phosphorylation of tyrosine64 delivers conformational changes distant from the active site, showing why phosphorylated Ras has reduced affinity to its downstream effector Raf. 19F NMR provides evidence for changes in the intrinsic GTPase and nucleotide exchange rate and identifies the concurrent presence of a major "closed" conformation alongside a minor yet functionally important "open" conformation at the ground state of Ras. This study expands the application of metal fluoride complexes in revealing major and minor conformational changes of dynamic and modified Ras proteins.
Collapse
Affiliation(s)
- Patrick Baumann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yi Jin
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, M13 9PL, Manchester, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
5
|
Narayan B, Kiel C, Buchete NV. Classification of GTP-dependent K-Ras4B active and inactive conformational states. J Chem Phys 2023; 158:091104. [PMID: 36889947 DOI: 10.1063/5.0139181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Classifying reliably active and inactive molecular conformations of wildtype (WT) and mutated oncogenic proteins is a key, ongoing challenge in molecular cancer studies. Here, we probe the GTP-bound K-Ras4B conformational dynamics using long-time atomistic molecular dynamics (MD) simulations. We extract and analyze the detailed underlying free energy landscape of WT K-Ras4B. We use two key reaction coordinates, labeled d1 and d2 (i.e., distances coordinating the Pβ atom of the GTP ligand with two key residues, T35 and G60), shown to correlate closely with activities of WT and mutated K-Ras4B. However, our new K-Ras4B conformational kinetics study reveals a more complex network of equilibrium Markovian states. We show that a new reaction coordinate is required to account for the orientation of acidic K-Ras4B sidechains such as D38 with respect to the interface with binding effector RAF1 and rationalize the activation/inactivation propensities and the corresponding molecular binding mechanisms. We use this understanding to unveil how a relatively conservative mutation (i.e., D33E, in the switch I region) can lead to significantly different activation propensities compared with WT K-Ras4B. Our study sheds new light on the ability of residues near the K-Ras4B-RAF1 interface to modulate the network of salt bridges at the binding interface with the RAF1 downstream effector and, thus, to influence the underlying GTP-dependent activation/inactivation mechanism. Altogether, our hybrid MD-docking modeling approach enables the development of new in silico methods for quantitative assessment of activation propensity changes (e.g., due to mutations or local binding environment). It also unveils the underlying molecular mechanisms and facilitates the rational design of new cancer drugs.
Collapse
Affiliation(s)
- Brajesh Narayan
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | | |
Collapse
|
6
|
Kolch W, Berta D, Rosta E. Dynamic regulation of RAS and RAS signaling. Biochem J 2023; 480:1-23. [PMID: 36607281 PMCID: PMC9988006 DOI: 10.1042/bcj20220234] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
RAS proteins regulate most aspects of cellular physiology. They are mutated in 30% of human cancers and 4% of developmental disorders termed Rasopathies. They cycle between active GTP-bound and inactive GDP-bound states. When active, they can interact with a wide range of effectors that control fundamental biochemical and biological processes. Emerging evidence suggests that RAS proteins are not simple on/off switches but sophisticated information processing devices that compute cell fate decisions by integrating external and internal cues. A critical component of this compute function is the dynamic regulation of RAS activation and downstream signaling that allows RAS to produce a rich and nuanced spectrum of biological outputs. We discuss recent findings how the dynamics of RAS and its downstream signaling is regulated. Starting from the structural and biochemical properties of wild-type and mutant RAS proteins and their activation cycle, we examine higher molecular assemblies, effector interactions and downstream signaling outputs, all under the aspect of dynamic regulation. We also consider how computational and mathematical modeling approaches contribute to analyze and understand the pleiotropic functions of RAS in health and disease.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dénes Berta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
7
|
Ilter M, Kasmer R, Jalalypour F, Atilgan C, Topcu O, Karakas N, Sensoy O. Inhibition of mutant RAS-RAF interaction by mimicking structural and dynamic properties of phosphorylated RAS. eLife 2022; 11:79747. [PMID: 36458814 PMCID: PMC9762712 DOI: 10.7554/elife.79747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Undruggability of RAS proteins has necessitated alternative strategies for the development of effective inhibitors. In this respect, phosphorylation has recently come into prominence as this reversible post-translational modification attenuates sensitivity of RAS towards RAF. As such, in this study, we set out to unveil the impact of phosphorylation on dynamics of HRASWT and aim to invoke similar behavior in HRASG12D mutant by means of small therapeutic molecules. To this end, we performed molecular dynamics (MD) simulations using phosphorylated HRAS and showed that phosphorylation of Y32 distorted Switch I, hence the RAS/RAF interface. Consequently, we targeted Switch I in HRASG12D by means of approved therapeutic molecules and showed that the ligands enabled detachment of Switch I from the nucleotide-binding pocket. Moreover, we demonstrated that displacement of Switch I from the nucleotide-binding pocket was energetically more favorable in the presence of the ligand. Importantly, we verified computational findings in vitro where HRASG12D/RAF interaction was prevented by the ligand in HEK293T cells that expressed HRASG12D mutant protein. Therefore, these findings suggest that targeting Switch I, hence making Y32 accessible might open up new avenues in future drug discovery strategies that target mutant RAS proteins.
Collapse
Affiliation(s)
- Metehan Ilter
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol UniversityIstanbulTurkey
| | - Ramazan Kasmer
- Medical Biology and Genetics Program, Graduate School for Health Sciences, Istanbul Medipol UniversityIstanbulTurkey,Cancer Research Center, Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| | - Farzaneh Jalalypour
- Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbulTurkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbulTurkey
| | - Ozan Topcu
- Medical Biology and Genetics Program, Graduate School for Health Sciences, Istanbul Medipol UniversityIstanbulTurkey
| | - Nihal Karakas
- Medical Biology and Genetics Program, Graduate School for Health Sciences, Istanbul Medipol UniversityIstanbulTurkey,Department of Medical Biology, International School of Medicine, Istanbul Medipol UniversityIstanbulTurkey
| | - Ozge Sensoy
- Department of Computer Engineering, School of Engineering and Natural Sciences, Istanbul Medipol UniversityIstanbulTurkey,Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| |
Collapse
|