1
|
Bürmann F, Clifton B, Koekemoer S, Wilkinson OJ, Kimanius D, Dillingham MS, Löwe J. Mechanism of DNA capture by the MukBEF SMC complex and its inhibition by a viral DNA mimic. Cell 2025; 188:2465-2479.e14. [PMID: 40168993 DOI: 10.1016/j.cell.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
Ring-like structural maintenance of chromosome (SMC) complexes are crucial for genome organization and operate through mechanisms of DNA entrapment and loop extrusion. Here, we explore the DNA loading process of the bacterial SMC complex MukBEF. Using cryoelectron microscopy (cryo-EM), we demonstrate that ATP binding opens one of MukBEF's three potential DNA entry gates, exposing a DNA capture site that positions DNA at the open neck gate. We discover that the gp5.9 protein of bacteriophage T7 blocks this capture site by DNA mimicry, thereby preventing DNA loading and inactivating MukBEF. We propose a comprehensive and unidirectional loading mechanism in which DNA is first captured at the complex's periphery and then ingested through the DNA entry gate, powered by a single cycle of ATP hydrolysis. These findings illuminate a fundamental aspect of how ubiquitous DNA organizers are primed for genome maintenance and demonstrate how this process can be disrupted by viruses.
Collapse
Affiliation(s)
- Frank Bürmann
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK; University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK.
| | - Bryony Clifton
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Sophie Koekemoer
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Oliver J Wilkinson
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Dari Kimanius
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK; CZ Imaging Institute, 3400 Bridge Parkway, Redwood City, CA 94065, USA
| | - Mark S Dillingham
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
2
|
Gu C, Takada S, Brandani GB, Terakawa T. Molecular dynamics simulations of human cohesin subunits identify DNA binding sites and their potential roles in DNA loop extrusion. PLoS Comput Biol 2025; 21:e1012493. [PMID: 40184420 PMCID: PMC11970657 DOI: 10.1371/journal.pcbi.1012493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/19/2025] [Indexed: 04/06/2025] Open
Abstract
The SMC complex cohesin mediates interphase chromatin structural formation in eukaryotic cells through DNA loop extrusion. Here, we sought to investigate its mechanism using molecular dynamics simulations. To achieve this, we first constructed the amino-acid-residue-resolution structural models of the cohesin subunits, SMC1, SMC3, STAG1, and NIPBL. By simulating these subunits with double-stranded DNA molecules, we predicted DNA binding patches on each subunit and quantified the affinities of these patches to DNA using their dissociation rate constants as a proxy. Then, we constructed the structural model of the whole cohesin complex and mapped the predicted high-affinity DNA binding patches on the structure. From the spatial relations of the predicted patches, we identified that multiple patches on the SMC1, SMC3, STAG1, and NIPBL subunits form a DNA clamping patch group. The simulations of the whole complex with double-stranded DNA molecules suggest that this patch group facilitates DNA bending and helps capture a DNA segment in the cohesin ring formed by the SMC1 and SMC3 subunits. In previous studies, these have been identified as critical steps in DNA loop extrusion. Therefore, this study provides experimentally testable predictions of DNA binding sites implicated in previously proposed DNA loop extrusion mechanisms and highlights the essential roles of the accessory subunits STAG1 and NIPBL in the mechanism.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Giovanni B. Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Terakawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Murayama Y. Sister chromatid cohesion through the lens of biochemical experiments. Curr Opin Cell Biol 2025; 93:102464. [PMID: 39879903 DOI: 10.1016/j.ceb.2025.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Faithful chromosome segregation in eukaryotes relies on physical cohesion between newly duplicated sister chromatids. Cohesin is a ring-shaped ATPase assembly that mediates sister chromatid cohesion through its ability to topologically entrap DNA. Cohesin, assisted by several regulatory proteins, binds to DNA prior to DNA replication and then holds two sister DNAs together when it encounters the replication machinery. Cohesion establishment further requires cohesin acetylation, which confers near eternal stability on chromatin-bound cohesin until the onset of chromosome segregation. In addition to a wealth of experimental evidence from cellular studies, recent advances in reconstitution approaches are now beginning to unravel the biochemical properties of cohesin that underlie its function in sister chromatid cohesion. This review summarizes recent insights into the mechanism of cohesion establishment.
Collapse
Affiliation(s)
- Yasuto Murayama
- Department of Chromosome Science, National Institute of Genetics, Mishima, 411-8540, Japan; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan.
| |
Collapse
|
4
|
Rutkauskas M, Kim E. In vitro dynamics of DNA loop extrusion by structural maintenance of chromosomes complexes. Curr Opin Genet Dev 2025; 90:102284. [PMID: 39591812 DOI: 10.1016/j.gde.2024.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Genomic DNA inside the cell's nucleus is highly organized and tightly controlled by the structural maintenance of chromosomes (SMC) protein complexes. These complexes fold genomes by creating and processively enlarging loops, a process called loop extrusion. After more than a decade of accumulating indirect evidence, recent in vitro single-molecule studies confirmed loop extrusion as an evolutionarily conserved function among eukaryotic and prokaryotic SMCs. These studies further provided important insights into mechanisms and regulations of these universal molecular machines, which will be discussed in this minireview.
Collapse
Affiliation(s)
- Marius Rutkauskas
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Eugene Kim
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Scott JS, Al Ayadi L, Epeslidou E, van Scheppingen RH, Mukha A, Kaaij LJT, Lutz C, Prekovic S. Emerging roles of cohesin-STAG2 in cancer. Oncogene 2025; 44:277-287. [PMID: 39613934 DOI: 10.1038/s41388-024-03221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Cohesin, a crucial regulator of genome organisation, plays a fundamental role in maintaining chromatin architecture as well as gene expression. Among its subunits, STAG2 stands out because of its frequent deleterious mutations in various cancer types, such as bladder cancer and melanoma. Loss of STAG2 function leads to significant alterations in chromatin structure, disrupts transcriptional regulation, and impairs DNA repair pathways. In this review, we explore the molecular mechanisms underlying cohesin-STAG2 function, highlighting its roles in healthy cells and its contributions to cancer biology, showing how STAG2 dysfunction promotes tumourigenesis and presents opportunities for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Julia S Scott
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Loubna Al Ayadi
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Anna Mukha
- Department of Medical BioSciences, RadboudUMC, Nijmegen, The Netherlands
| | - Lucas J T Kaaij
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Janissen R, Barth R, Davidson IF, Peters JM, Dekker C. All eukaryotic SMC proteins induce a twist of -0.6 at each DNA loop extrusion step. SCIENCE ADVANCES 2024; 10:eadt1832. [PMID: 39671477 PMCID: PMC11641105 DOI: 10.1126/sciadv.adt1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Eukaryotes carry three types of structural maintenance of chromosome (SMC) protein complexes, condensin, cohesin, and SMC5/6, which are ATP-dependent motor proteins that remodel the genome via DNA loop extrusion (LE). SMCs modulate DNA supercoiling but remains incompletely understood how this is achieved. Using a single-molecule magnetic tweezers assay that directly measures how much twist is induced by individual SMCs in each LE step, we demonstrate that all three SMC complexes induce the same large negative twist (i.e., linking number change [Formula: see text] of ~-0.6 at each LE step) into the extruded loop, independent of step size and DNA tension. Using ATP hydrolysis mutants and nonhydrolyzable ATP analogs, we find that ATP binding is the twist-inducing event during the ATPase cycle, coinciding with the force-generating LE step. The fact that all three eukaryotic SMC proteins induce the same amount of twist indicates a common DNA-LE mechanism among these SMC complexes.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
- BITZ Transformation Lab, Deggendorf Institute of Technology, Oberschneiding, 94363, Germany
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
| | - Iain F. Davidson
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, 1030, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, 1030, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
| |
Collapse
|
7
|
Rhind N. In through the out door: A loop-binding-first model for topological cohesin loading. Bioessays 2024; 46:e2400120. [PMID: 39159466 PMCID: PMC11427176 DOI: 10.1002/bies.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Cohesin is a ring-shaped complex that is loaded on DNA in two different conformations. In one conformation, it forms loops to organize the interphase genome; in the other, it topologically encircles sibling chromosomes to facilitate homologous recombination and to establish the cohesion that is required for orderly segregation during mitosis. How, and even if, these two loading conformation are related is unclear. Here, I propose that loop binding is a required first step for topological binding. This loop-binding-first model integrates the known information about the two loading mechanisms, explains genetic requirements for the two and explains how topological loading evolved from loop binding.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
8
|
Bing X, Ke W, Fujioka M, Kurbidaeva A, Levitt S, Levine M, Schedl P, Jaynes JB. Chromosome structure in Drosophila is determined by boundary pairing not loop extrusion. eLife 2024; 13:RP94070. [PMID: 39110499 PMCID: PMC11305675 DOI: 10.7554/elife.94070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Two different models have been proposed to explain how the endpoints of chromatin looped domains ('TADs') in eukaryotic chromosomes are determined. In the first, a cohesin complex extrudes a loop until it encounters a boundary element roadblock, generating a stem-loop. In this model, boundaries are functionally autonomous: they have an intrinsic ability to halt the movement of incoming cohesin complexes that is independent of the properties of neighboring boundaries. In the second, loops are generated by boundary:boundary pairing. In this model, boundaries are functionally non-autonomous, and their ability to form a loop depends upon how well they match with their neighbors. Moreover, unlike the loop-extrusion model, pairing interactions can generate both stem-loops and circle-loops. We have used a combination of MicroC to analyze how TADs are organized, and experimental manipulations of the even skipped TAD boundary, homie, to test the predictions of the 'loop-extrusion' and the 'boundary-pairing' models. Our findings are incompatible with the loop-extrusion model, and instead suggest that the endpoints of TADs in flies are determined by a mechanism in which boundary elements physically pair with their partners, either head-to-head or head-to-tail, with varying degrees of specificity. Although our experiments do not address how partners find each other, the mechanism is unlikely to require loop extrusion.
Collapse
Affiliation(s)
- Xinyang Bing
- Lewis Sigler Institute, Princeton UniversityPrincetonUnited States
| | - Wenfan Ke
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Amina Kurbidaeva
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Sarah Levitt
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Mike Levine
- Lewis Sigler Institute, Princeton UniversityPrincetonUnited States
| | - Paul Schedl
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| |
Collapse
|
9
|
Vaculíková J, Holá M, Králová B, Lelkes E, Štefanovie B, Vágnerová R, Angelis KJ, Paleček JJ. NSE5 subunit interacts with distant regions of the SMC arms in the Physcomitrium patens SMC5/6 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38858852 DOI: 10.1111/tpj.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors. These SMC dynamic conformational changes are involved in their loading, translocation, and DNA loop extrusion. Here, we examined the binding and role of the PpNSE5 regulatory factor of Physcomitrium patens PpSMC5/6 complex. We found that the PpNSE5 C-terminal half (aa230-505) is required for binding to its PpNSE6 partner, while the N-terminal half (aa1-230) binds PpSMC subunits. Specifically, the first 71 amino acids of PpNSE5 were required for binding to PpSMC6. Interestingly, the PpNSE5 binding required the PpSMC6 head-proximal joint region and PpSMC5 hinge-proximal arm, suggesting a long distance between binding sites on PpSMC5 and PpSMC6 arms. Therefore, we hypothesize that PpNSE5 either links two antiparallel SMC5/6 complexes or binds one SMC5/6 in elbow-bent conformation, the later model being consistent with the role of NSE5/NSE6 dimer as SMC5/6 loading factor to DNA lesions. In addition, we generated the P. patens Ppnse5KO1 mutant line with an N-terminally truncated version of PpNSE5, which exhibited DNA repair defects while keeping a normal number of rDNA repeats. As the first 71 amino acids of PpNSE5 are required for PpSMC6 binding, our results suggest the role of PpNSE5-PpSMC6 interaction in SMC5/6 loading to DNA lesions.
Collapse
Affiliation(s)
- Jitka Vaculíková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marcela Holá
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Barbora Králová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Edit Lelkes
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Barbora Štefanovie
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Jan J Paleček
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| |
Collapse
|
10
|
Rittenhouse NL, Dowen JM. Cohesin regulation and roles in chromosome structure and function. Curr Opin Genet Dev 2024; 85:102159. [PMID: 38382406 PMCID: PMC10947815 DOI: 10.1016/j.gde.2024.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Chromosome structure regulates DNA-templated processes such as transcription of genes. Dynamic changes to chromosome structure occur during development and in disease contexts. The cohesin complex is a molecular motor that regulates chromosome structure by generating DNA loops that bring two distal genomic sites into close spatial proximity. There are many open questions regarding the formation and dissolution of DNA loops, as well as the role(s) of DNA loops in regulating transcription of the interphase genome. This review focuses on recent discoveries that provide molecular insights into the role of cohesin and chromosome structure in gene transcription during development and disease.
Collapse
Affiliation(s)
- Natalie L Rittenhouse
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jill M Dowen
- Department of Biophysics & Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Richeldi M, Pobegalov G, Higashi TL, Gmurczyk K, Uhlmann F, Molodtsov MI. Mechanical disengagement of the cohesin ring. Nat Struct Mol Biol 2024; 31:23-31. [PMID: 37872232 PMCID: PMC11377297 DOI: 10.1038/s41594-023-01122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/11/2023] [Indexed: 10/25/2023]
Abstract
Cohesin forms a proteinaceous ring that is thought to link sister chromatids by entrapping DNA and counteracting the forces generated by the mitotic spindle. Whether individual cohesins encircle both sister DNAs and how cohesin opposes spindle-generated forces remains unknown. Here we perform force measurements on individual yeast cohesin complexes either bound to DNA or holding together two DNAs. By covalently closing the hinge and Smc3Psm3-kleisin interfaces we find that the mechanical stability of the cohesin ring entrapping DNA is determined by the hinge domain. Forces of ~20 pN disengage cohesin at the hinge and release DNA, indicating that ~40 cohesin molecules are sufficient to counteract known spindle forces. Our findings provide a mechanical framework for understanding how cohesin interacts with sister chromatids and opposes the spindle-generated tension during mitosis, with implications for other force-generating chromosomal processes including transcription and DNA replication.
Collapse
Affiliation(s)
- Martina Richeldi
- Biophysics and Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Georgii Pobegalov
- Biophysics and Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Kamakura City, Japan
| | - Karolina Gmurczyk
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| | - Maxim I Molodtsov
- Biophysics and Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics and Astronomy, University College London, London, UK.
| |
Collapse
|
12
|
Nasmyth KA, Lee BG, Roig MB, Löwe J. What AlphaFold tells us about cohesin's retention on and release from chromosomes. eLife 2023; 12:RP88656. [PMID: 37975572 PMCID: PMC10656103 DOI: 10.7554/elife.88656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Cohesin is a trimeric complex containing a pair of SMC proteins (Smc1 and Smc3) whose ATPase domains at the end of long coiled coils (CC) are interconnected by Scc1. During interphase, it organizes chromosomal DNA topology by extruding loops in a manner dependent on Scc1's association with two large hook-shaped proteins called SA (yeast: Scc3) and Nipbl (Scc2). The latter's replacement by Pds5 recruits Wapl, which induces release from chromatin via a process requiring dissociation of Scc1's N-terminal domain (NTD) from Smc3. If blocked by Esco (Eco)-mediated Smc3 acetylation, cohesin containing Pds5 merely maintains pre-existing loops, but a third fate occurs during DNA replication, when Pds5-containing cohesin associates with Sororin and forms structures that hold sister DNAs together. How Wapl induces and Sororin blocks release has hitherto remained mysterious. In the 20 years since their discovery, not a single testable hypothesis has been proposed as to their role. Here, AlphaFold 2 (AF) three-dimensional protein structure predictions lead us to propose formation of a quarternary complex between Wapl, SA, Pds5, and Scc1's NTD, in which the latter is juxtaposed with (and subsequently sequestered by) a highly conserved cleft within Wapl's C-terminal domain. AF also reveals how Scc1's dissociation from Smc3 arises from a distortion of Smc3's CC induced by engagement of SMC ATPase domains, how Esco acetyl transferases are recruited to Smc3 by Pds5, and how Sororin prevents release by binding to the Smc3/Scc1 interface. Our hypotheses explain the phenotypes of numerous existing mutations and are highly testable.
Collapse
Affiliation(s)
- Kim A Nasmyth
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Byung-Gil Lee
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Jan Löwe
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
13
|
Kaur P, Lu X, Xu Q, Irvin EM, Pappas C, Zhang H, Finkelstein IJ, Shi Z, Tao YJ, Yu H, Wang H. High-speed AFM imaging reveals DNA capture and loop extrusion dynamics by cohesin-NIPBL. J Biol Chem 2023; 299:105296. [PMID: 37774974 PMCID: PMC10656236 DOI: 10.1016/j.jbc.2023.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023] Open
Abstract
3D chromatin organization plays a critical role in regulating gene expression, DNA replication, recombination, and repair. While initially discovered for its role in sister chromatid cohesion, emerging evidence suggests that the cohesin complex (SMC1, SMC3, RAD21, and SA1/SA2), facilitated by NIPBL, mediates topologically associating domains and chromatin loops through DNA loop extrusion. However, information on how conformational changes of cohesin-NIPBL drive its loading onto DNA, initiation, and growth of DNA loops is still lacking. In this study, high-speed atomic force microscopy imaging reveals that cohesin-NIPBL captures DNA through arm extension, assisted by feet (shorter protrusions), and followed by transfer of DNA to its lower compartment (SMC heads, RAD21, SA1, and NIPBL). While binding at the lower compartment, arm extension leads to the capture of a second DNA segment and the initiation of a DNA loop that is independent of ATP hydrolysis. The feet are likely contributed by the C-terminal domains of SA1 and NIPBL and can transiently bind to DNA to facilitate the loading of the cohesin complex onto DNA. Furthermore, high-speed atomic force microscopy imaging reveals distinct forward and reverse DNA loop extrusion steps by cohesin-NIPBL. These results advance our understanding of cohesin by establishing direct experimental evidence for a multistep DNA-binding mechanism mediated by dynamic protein conformational changes.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA.
| | - Xiaotong Lu
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Qi Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang Province, P.R. China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, P.R. China
| | | | - Colette Pappas
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Zhubing Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang Province, P.R. China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, P.R. China
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Hongtao Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang Province, P.R. China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, P.R. China
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA; Toxicology Program, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
14
|
Alonso-Gil D, Losada A. NIPBL and cohesin: new take on a classic tale. Trends Cell Biol 2023; 33:860-871. [PMID: 37062615 DOI: 10.1016/j.tcb.2023.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023]
Abstract
Cohesin folds the genome in dynamic chromatin loops and holds the sister chromatids together. NIPBLScc2 is currently considered the cohesin loader, a role that may need reevaluation. NIPBL activates the cohesin ATPase, which is required for topological entrapment of sister DNAs and to fuel DNA loop extrusion, but is not required for chromatin association. Mechanistic dissection of these processes suggests that both NIPBL and the cohesin STAG subunit bind DNA. NIPBL also regulates conformational switches of the complex. Interactions of NIPBL with chromatin factors, including remodelers, replication proteins, and the transcriptional machinery, affect cohesin loading and distribution. Here, we discuss recent research addressing how NIPBL modulates cohesin activities and how its mutation causes a developmental disorder, Cornelia de Lange Syndrome (CdLS).
Collapse
Affiliation(s)
- Dácil Alonso-Gil
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
15
|
Kaushik A, Than T, Petela NJ, Voulgaris M, Percival C, Daniels P, Rafferty JB, Nasmyth KA, Hu B. Conformational dynamics of cohesin/Scc2 loading complex are regulated by Smc3 acetylation and ATP binding. Nat Commun 2023; 14:5929. [PMID: 37739959 PMCID: PMC10516938 DOI: 10.1038/s41467-023-41596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
The ring-shaped cohesin complex is a key player in sister chromatid cohesion, DNA repair, and gene transcription. The loading of cohesin to chromosomes requires the loader Scc2 and is regulated by ATP. This process is hindered by Smc3 acetylation. However, the molecular mechanism underlying this inhibition remains mysterious. Here, using Saccharomyces cerevisiae as a model system, we identify a novel configuration of Scc2 with pre-engaged cohesin and reveal dynamic conformations of the cohesin/Scc2 complex in the loading reaction. We demonstrate that Smc3 acetylation blocks the association of Scc2 with pre-engaged cohesin by impairing the interaction of Scc2 with Smc3's head. Lastly, we show that ATP binding induces the cohesin/Scc2 complex to clamp DNA by promoting the interaction between Scc2 and Smc3 coiled coil. Our results illuminate a dynamic reconfiguration of the cohesin/Scc2 complex during loading and indicate how Smc3 acetylation and ATP regulate this process.
Collapse
Affiliation(s)
- Aditi Kaushik
- The Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Thane Than
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Naomi J Petela
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Charlotte Percival
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Peter Daniels
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - John B Rafferty
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Bin Hu
- The Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
16
|
Nagasaka K, Davidson IF, Stocsits RR, Tang W, Wutz G, Batty P, Panarotto M, Litos G, Schleiffer A, Gerlich DW, Peters JM. Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms. Mol Cell 2023; 83:3049-3063.e6. [PMID: 37591243 DOI: 10.1016/j.molcel.2023.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/28/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Cohesin connects CTCF-binding sites and other genomic loci in cis to form chromatin loops and replicated DNA molecules in trans to mediate sister chromatid cohesion. Whether cohesin uses distinct or related mechanisms to perform these functions is unknown. Here, we describe a cohesin hinge mutant that can extrude DNA into loops but is unable to mediate cohesion in human cells. Our results suggest that the latter defect arises during cohesion establishment. The observation that cohesin's cohesion and loop extrusion activities can be partially separated indicates that cohesin uses distinct mechanisms to perform these two functions. Unexpectedly, the same hinge mutant can also not be stopped by CTCF boundaries as well as wild-type cohesin. This suggests that cohesion establishment and cohesin's interaction with CTCF boundaries depend on related mechanisms and raises the possibility that both require transient hinge opening to entrap DNA inside the cohesin ring.
Collapse
Affiliation(s)
- Kota Nagasaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Roman R Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Paul Batty
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna 1030, Austria
| | - Melanie Panarotto
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna 1030, Austria
| | - Gabriele Litos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria.
| |
Collapse
|
17
|
Bürmann F, Löwe J. Structural biology of SMC complexes across the tree of life. Curr Opin Struct Biol 2023; 80:102598. [PMID: 37104976 PMCID: PMC10512200 DOI: 10.1016/j.sbi.2023.102598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes guard and organize the three-dimensional structure of chromosomal DNA across the tree of life. Many SMC functions can be explained by an inherent motor activity that extrudes large DNA loops while the complexes move along their substrate. Here, we review recent structural insights into the architecture and conservation of these molecular machines, their interaction with DNA, and the conformational changes that are linked to their ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Frank Bürmann
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
18
|
Taschner M, Gruber S. DNA segment capture by Smc5/6 holocomplexes. Nat Struct Mol Biol 2023; 30:619-628. [PMID: 37012407 DOI: 10.1038/s41594-023-00956-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
Three distinct structural maintenance of chromosomes (SMC) complexes facilitate chromosome folding and segregation in eukaryotes, presumably by DNA loop extrusion. How SMCs interact with DNA to extrude loops is not well understood. Among the SMC complexes, Smc5/6 has dedicated roles in DNA repair and preventing a buildup of aberrant DNA junctions. In the present study, we describe the reconstitution of ATP-dependent DNA loading by yeast Smc5/6 rings. Loading strictly requires the Nse5/6 subcomplex which opens the kleisin neck gate. We show that plasmid molecules are topologically entrapped in the kleisin and two SMC subcompartments, but not in the full SMC compartment. This is explained by the SMC compartment holding a looped DNA segment and by kleisin locking it in place when passing between the two flanks of the loop for neck-gate closure. Related segment capture events may provide the power stroke in subsequent DNA extrusion steps, possibly also in other SMC complexes, thus providing a unifying principle for DNA loading and extrusion.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
19
|
Alonso-Gil D, Cuadrado A, Giménez-Llorente D, Rodríguez-Corsino M, Losada A. Different NIPBL requirements of cohesin-STAG1 and cohesin-STAG2. Nat Commun 2023; 14:1326. [PMID: 36898992 PMCID: PMC10006224 DOI: 10.1038/s41467-023-36900-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cohesin organizes the genome through the formation of chromatin loops. NIPBL activates cohesin's ATPase and is essential for loop extrusion, but its requirement for cohesin loading is unclear. Here we have examined the effect of reducing NIPBL levels on the behavior of the two cohesin variants carrying STAG1 or STAG2 by combining a flow cytometry assay to measure chromatin-bound cohesin with analyses of its genome-wide distribution and genome contacts. We show that NIPBL depletion results in increased cohesin-STAG1 on chromatin that further accumulates at CTCF positions while cohesin-STAG2 diminishes genome-wide. Our data are consistent with a model in which NIPBL may not be required for chromatin association of cohesin but it is for loop extrusion, which in turn facilitates stabilization of cohesin-STAG2 at CTCF positions after being loaded elsewhere. In contrast, cohesin-STAG1 binds chromatin and becomes stabilized at CTCF sites even under low NIPBL levels, but genome folding is severely impaired.
Collapse
Affiliation(s)
- Dácil Alonso-Gil
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
20
|
Choudhary K, Kupiec M. The cohesin complex of yeasts: sister chromatid cohesion and beyond. FEMS Microbiol Rev 2023; 47:6825453. [PMID: 36370456 DOI: 10.1093/femsre/fuac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Each time a cell divides, it needs to duplicate the genome and then separate the two copies. In eukaryotes, which usually have more than one linear chromosome, this entails tethering the two newly replicated DNA molecules, a phenomenon known as sister chromatid cohesion (SCC). Cohesion ensures proper chromosome segregation to separate poles during mitosis. SCC is achieved by the presence of the cohesin complex. Besides its canonical function, cohesin is essential for chromosome organization and DNA damage repair. Surprisingly, yeast cohesin is loaded in G1 before DNA replication starts but only acquires its binding activity during DNA replication. Work in microorganisms, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe has greatly contributed to the understanding of cohesin composition and functions. In the last few years, much progress has been made in elucidating the role of cohesin in chromosome organization and compaction. Here, we discuss the different functions of cohesin to ensure faithful chromosome segregation and genome stability during the mitotic cell division in yeast. We describe what is known about its composition and how DNA replication is coupled with SCC establishment. We also discuss current models for the role of cohesin in chromatin loop extrusion and delineate unanswered questions about the activity of this important, conserved complex.
Collapse
Affiliation(s)
- Karan Choudhary
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|