1
|
Bressan D, Walton N, Hannon GJ. Cancer Research in the Age of Spatial Omics: Lessons from IMAXT. Cancer Discov 2025; 15:16-21. [PMID: 39801241 DOI: 10.1158/2159-8290.cd-24-1686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
The Imaging and Molecular Annotation of Xenografts and Tumors Cancer Grand Challenges team was set up with the objective of developing the "next generation" of pathology and cancer research by using a combination of single-cell and spatial omics tools to produce 3D molecularly annotated maps of tumors. Its activities overlapped, and in some cases catalyzed, a spatial revolution in biology that saw new technologies being deployed to investigate the roles of tumor heterogeneity and of the tumor micro-environment. See related article by Stratton et al., p. 22 See related article by Bhattacharjee et al., p. 28 See related article by Goodwin et al., p. 34.
Collapse
Affiliation(s)
- Dario Bressan
- CRUK Cambridge Institute, University of Cambridge. Li Ka Shing Centre, Cambridge, United Kingdom
| | - Nicholas Walton
- Institute of Astronomy, University of Cambridge, Cambridge, United Kingdom
| | - Gregory J Hannon
- CRUK Cambridge Institute, University of Cambridge. Li Ka Shing Centre, Cambridge, United Kingdom
| |
Collapse
|
2
|
Yuan Q, Yin L, He J, Zeng Q, Liang Y, Shen Y, Zu X. Metabolism of asparagine in the physiological state and cancer. Cell Commun Signal 2024; 22:163. [PMID: 38448969 PMCID: PMC10916255 DOI: 10.1186/s12964-024-01540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Asparagine, an important amino acid in mammals, is produced in several organs and is widely used for the production of other nutrients such as glucose, proteins, lipids, and nucleotides. Asparagine has also been reported to play a vital role in the development of cancer cells. Although several types of cancer cells can synthesise asparagine alone, their synthesis levels are insufficient to meet their requirements. These cells must rely on the supply of exogenous asparagine, which is why asparagine is considered a semi-essential amino acid. Therefore, nutritional inhibition by targeting asparagine is often considered as an anti-cancer strategy and has shown success in the treatment of leukaemia. However, asparagine limitation alone does not achieve an ideal therapeutic effect because of stress responses that upregulate asparagine synthase (ASNS) to meet the requirements for asparagine in cancer cells. Various cancer cells initiate different reprogramming processes in response to the deficiency of asparagine. Therefore, it is necessary to comprehensively understand the asparagine metabolism in cancers. This review primarily discusses the physiological role of asparagine and the current progress in the field of cancer research.
Collapse
Affiliation(s)
- Qiong Yuan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiting Zeng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuxin Liang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
3
|
Cannell IG, Sawicka K, Pearsall I, Wild SA, Deighton L, Pearsall SM, Lerda G, Joud F, Khan S, Bruna A, Simpson KL, Mulvey CM, Nugent F, Qosaj F, Bressan D, Dive C, Caldas C, Hannon GJ. FOXC2 promotes vasculogenic mimicry and resistance to anti-angiogenic therapy. Cell Rep 2023; 42:112791. [PMID: 37499655 DOI: 10.1016/j.celrep.2023.112791] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/09/2022] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Vasculogenic mimicry (VM) describes the formation of pseudo blood vessels constructed of tumor cells that have acquired endothelial-like properties. VM channels endow the tumor with a tumor-derived vascular system that directly connects to host blood vessels, and their presence is generally associated with poor patient prognosis. Here we show that the transcription factor, Foxc2, promotes VM in diverse solid tumor types by driving ectopic expression of endothelial genes in tumor cells, a process that is stimulated by hypoxia. VM-proficient tumors are resistant to anti-angiogenic therapy, and suppression of Foxc2 augments response. This work establishes co-option of an embryonic endothelial transcription factor by tumor cells as a key mechanism driving VM proclivity and motivates the search for VM-inhibitory agents that could form the basis of combination therapies with anti-angiogenics.
Collapse
Affiliation(s)
- Ian G Cannell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| | - Kirsty Sawicka
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Isabella Pearsall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Sophia A Wild
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Lauren Deighton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah M Pearsall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Giulia Lerda
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Showkhin Khan
- New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Preclinical Modelling of Paediatric Cancer Evolution Team, The Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5N, UK
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Claire M Mulvey
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fiona Nugent
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fatime Qosaj
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Dario Bressan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Department of Oncology and Breast Cancer Programme, CRUK Cambridge Centre, Cambridge University Hospitals NHS and University of Cambridge, Cambridge CB2 2QQ, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
4
|
Liang X, Chen X, Li H, Li Y. Immune checkpoint inhibitors in first-line therapies of metastatic or early triple-negative breast cancer: a systematic review and network meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1137464. [PMID: 37229447 PMCID: PMC10204114 DOI: 10.3389/fendo.2023.1137464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Background The optimal first-line immune checkpoint inhibitor (ICI) treatment strategy for metastatic or early triple-negative breast cancer (TNBC) has not yet been determined as a result of various randomized controlled trials (RCTs). The purpose of this study was to compare the efficacy and safety of ICIs in patients with metastatic or early TNBC. Methods RCTs comparing the efficacy and safety of ICIs in patients with TNBC were included in the studies. Based on PRISMA guidelines, we estimated pooled hazard ratios (HRs) and odds ratios (ORs) using random-effects models of Bayesian network meta-analysis. Primary outcomes were progression-free survival (PFS) and overall survival (OS). Secondary outcomes included pathologic complete response rate (pCR), grade ≥ 3 treatment-related adverse events (trAEs), immune-related adverse events (irAEs), and grade ≥ 3 irAEs. Results The criteria for eligibility were met by a total of eight RCTs involving 4,589 patients with TNBC. When ICIs were used in patients without programmed death-ligand 1 (PD-L1) selection, there was a trend toward improved PFS, OS, and pCR, without significant differences. Pembrolizumab plus chemotherapy is superior to other treatment regimens in terms of survival for TNBC patients based on Bayesian ranking profiles. Subgroup analysis by PD-L1 positive population indicated similar results, and atezolizumab plus chemotherapy provided better survival outcomes. Among grade ≥ 3 trAEs and any grade irAEs, there was no statistically significant difference among different ICI agents. The combination of ICIs with chemotherapy was associated with a higher incidence of grade ≥ 3 irAEs. Based on rank probability, the ICI plus chemotherapy group was more likely to be associated with grade ≥ 3 trAEs, any grade irAEs, and grade ≥ 3 irAEs. Hypothyroidism and hyperthyroidism were the most frequent irAEs in patients receiving ICI. Conclusions ICI regimens had relatively greater efficacy and safety profile. Pembrolizumab plus chemotherapy and atezolizumab plus chemotherapy seem to be superior first-line treatments for intention-to-treat and PD-L1-positive TNBC patients, respectively. It may be useful for making clinical decisions to evaluate the efficacy and safety of different ICIs based on our study. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022354643.
Collapse
Affiliation(s)
- Xueyan Liang
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xiaoyu Chen
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Huijuan Li
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yan Li
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|