1
|
Raghavan P. Muscle physiology in spasticity and muscle stiffness. Toxicon 2025; 259:108350. [PMID: 40216366 DOI: 10.1016/j.toxicon.2025.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
This paper examines the physiological changes in spastic muscles contributing to spasticity and muscle stiffness, focusing on the underlying mechanisms and their clinical implications. Spasticity, which is prevalent in neurological conditions such as multiple sclerosis, cerebral palsy, spinal cord injury, stroke, and traumatic brain injury, is characterized by disordered sensorimotor control and often results in increased muscle stiffness and resistance to movement. Recent developments in the understanding of spasticity suggest the importance of architectural changes in muscles that may contribute to increased passive resistance, potentiate reflex mechanisms, and progression to fibrosis, with hyaluronan (HA), a glycosaminoglycan, playing a pivotal in modulating the properties of the muscle extracellular matrix (ECM). The hyaluronan hypothesis of muscle stiffness postulates that the accumulation and biophysical alteration of HA in the ECM of muscle increases its viscosity, resulting in increased passive mechanical resistance. This is turn mayincrease muscle sensitivity to stretch, potentiating spasticity, and lead to cellular differentiation of myofibroblasts to fibroblasts ultimately leading to fibrosis and contracture. A deeper understanding of HA's role in ECM dynamics offers promising avenues for novel treatments aimed at mitigating stiffness and preventing long-term disability in patients with spasticity.
Collapse
Affiliation(s)
- Preeti Raghavan
- Departments of Physical Medicine and Rehabilitation and Neurology, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
2
|
Emmert ME, Emmert AS, Goh Q, Cornwall R. Sexual dimorphisms in skeletal muscle: current concepts and research horizons. J Appl Physiol (1985) 2024; 137:274-299. [PMID: 38779763 PMCID: PMC11343095 DOI: 10.1152/japplphysiol.00529.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
The complex compositional and functional nature of skeletal muscle makes this organ an essential topic of study for biomedical researchers and clinicians. An additional layer of complexity is added with the consideration of sex as a biological variable. Recent research advances have revealed sexual dimorphisms in developmental biology, muscle homeostasis, adaptive responses, and disorders relating to skeletal muscle. Many of the observed sex differences have hormonal and molecular mechanistic underpinnings, whereas others have yet to be elucidated. Future research is needed to investigate the mechanisms dictating sex-based differences in the various aspects of skeletal muscle. As such, it is necessary that skeletal muscle biologists ensure that both female and male subjects are represented in biomedical and clinical studies to facilitate the successful testing and development of therapeutics for all patients.
Collapse
Affiliation(s)
- Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrew S Emmert
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
3
|
Das I, Shay-Winkler K, Emmert ME, Goh Q, Cornwall R. The Relative Efficacy of Available Proteasome Inhibitors in Preventing Muscle Contractures Following Neonatal Brachial Plexus Injury. J Bone Joint Surg Am 2024; 106:727-734. [PMID: 38194588 PMCID: PMC11023787 DOI: 10.2106/jbjs.23.00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Contractures following neonatal brachial plexus injury (NBPI) are associated with growth deficits in denervated muscles. This impairment is mediated by an increase in muscle protein degradation, as contractures can be prevented in an NBPI mouse model with bortezomib (BTZ), a proteasome inhibitor (PI). However, BTZ treatment causes substantial toxicity (0% to 80% mortality). The current study tested the hypothesis that newer-generation PIs can prevent contractures with less severe toxicity than BTZ. METHODS Unilateral brachial plexus injuries were surgically created in postnatal (5-day-old) mice. Following NBPI, mice were treated with either saline solution or various doses of 1 of 3 different PIs: ixazomib (IXZ), carfilzomib (CFZ), or marizomib (MRZ). Four weeks post-NBPI, mice were assessed for bilateral passive range of motion at the shoulder and elbow joints, with blinding to the treatment group, through an established digital photography technique to determine contracture severity. Drug toxicity was assessed with survival curves. RESULTS All PIs prevented contractures at both the elbow and shoulder (p < 0.05 versus saline solution controls), with the exception of IXZ, which did not prevent shoulder contractures. However, their efficacies and toxicity profiles differed. At lower doses, CFZ was limited by toxicity (30% to 40% mortality), whereas MRZ was limited by efficacy. At higher doses, CFZ was limited by loss of efficacy, MRZ was limited by toxicity (50% to 60% mortality), and IXZ was limited by toxicity (80% to 100% mortality) and loss of efficacy. Comparisons of the data on these drugs as well as data on BTZ generated in prior studies revealed BTZ to be optimal for preventing contractures, although it, too, was limited by toxicity. CONCLUSIONS All of the tested second-generation PIs were able to reduce NBPI-induced contractures, offering further proof of concept for a regulatory role of the proteasome in contracture formation. However, the narrow dose ranges of efficacy for all PIs highlight the necessity of precise proteasome regulation for preventing contractures. Finally, the substantial toxicity stemming from proteasome inhibition underscores the importance of identifying muscle-targeted strategies to suppress protein degradation and prevent contractures safely. CLINICAL RELEVANCE Although PIs offer unique opportunities to establish critical mechanistic insights into contracture pathophysiology, their clinical use is contraindicated in patients with NPBI at this time.
Collapse
Affiliation(s)
- Indranshu Das
- Department of Medical Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kritton Shay-Winkler
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
4
|
Qin H, Rui J, Lao J. Heme oxygenase-1 therapy attenuates muscle atrophy following global brachial plexus avulsion in juvenile rats. Muscle Nerve 2023; 68:789-797. [PMID: 37698285 DOI: 10.1002/mus.27972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION/AIMS Brachial plexus injury can seriously affect distal target muscle function, and long-term denervation leads to irreversible structural damage. In the present study, we examined the effect of hemin, a heme oxygenase-1 (HO-1) inducer, on intrinsic forepaw muscle atrophy induced by pan-plexus injury in juvenile rats, as well as its underlying mechanism. METHODS A global brachial plexus avulsion (GBPA) model of rat was established, and thirty 6-wk-old male rats were randomly divided into five groups: control, GBPA plus scramble small intering RNA (siRNA), GBPA plus scramble siRNA plus hemin, GBPA plus HO-1 siRNA, and GBPA plus HO-1 siRNA plus hemin. Hemin (50 mg/kg) was administered intraperitoneally once daily and the siRNA (5 μg) was injected intramuscularly twice a week. Intrinsic forepaw muscles were used for analysis. Myofiber cross-sectional area (CSA), capillary-to-fiber ratio (C/F), and fiber-type composition were assessed. The levels of inflammatory factors, ubiquitin-protein ligases, and autophagy-related proteins were also measured. RESULTS We found that hemin treatment could effectively ameliorate denervated intrinsic forepaw muscle atrophy and suppress type I to II myofiber-type conversion. Hemin treatment failed to prevent muscle capillary loss after denervation. The levels of inflammatory factors (tumor necrosis factor alpha [TNFα] and interleukin 6 [IL-6]), ubiquitin-protein ligases (MuRF-1 and MAFbx), and autophagy-related proteins (BNIP3 and LC3B-II/I ratio) were increased by denervation and HO-1 therapy attenuated the increment. DISCUSSION Upregulation of HO-1 might potentially be an effective strategy to alleviate denervation-related muscle atrophy and might be a promising adjunctive treatment to improve hand function in children with pan-plexus injury.
Collapse
Affiliation(s)
- Hongjiu Qin
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hand Reconstruction (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Institute of Hand Surgery, Fudan University, Shanghai, China
| | - Jing Rui
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hand Reconstruction (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Institute of Hand Surgery, Fudan University, Shanghai, China
| | - Jie Lao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hand Reconstruction (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
- Institute of Hand Surgery, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Runkel MT, Tarabishi A, Shay-Winkler K, Emmert ME, Goh Q, Cornwall R. The role of sympathetic innervation in neonatal muscle growth and neuromuscular contractures. FEBS J 2023; 290:4877-4898. [PMID: 37462535 PMCID: PMC10592371 DOI: 10.1111/febs.16908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Neonatal brachial plexus injury (NBPI), a leading cause of pediatric upper limb paralysis, results in disabling and incurable muscle contractures that are driven by impaired longitudinal growth of denervated muscles. A rare form of NBPI, which maintains both afferent and sympathetic muscle innervation despite motor denervation, protects against contractures. We have previously ruled out a role for NRG/ErbB signaling, the predominant pathway governing antegrade afferent neuromuscular transmission, in modulating the formation of contractures. Our current study therefore investigated the contributions of sympathetic innervation of skeletal muscle in modulating NBPI-induced contractures. Through chemical sympathectomy and pharmacologic modification with a β2 -adrenergic agonist, we discovered that sympathetic innervation alone is neither required nor sufficient to modulate contracture formation in neonatal mice. Despite this, sympathetic innervation plays an intriguing sex-specific role in mediating neonatal muscle growth, as the cross-sectional area (CSA) and volume of normally innervated male muscles were diminished by ablation of sympathetic neurons and increased by β-adrenergic stimulation. Intriguingly, the robust alterations in CSA occurred with minimal changes to normal longitudinal muscle growth as determined by sarcomere length. Instead, β-adrenergic stimulation exacerbated sarcomere overstretch in denervated male muscles, indicating potentially discrete regulation of muscle width and length. Future investigations into the mechanistic underpinnings of these distinct aspects of muscle growth are thus essential for improving clinical outcomes in patients affected by muscle disorders in which both length and width are affected.
Collapse
Affiliation(s)
- Mason T. Runkel
- Department of Health Sciences, Butler University, Indianapolis, IN, USA
| | - Albaraa Tarabishi
- Department of Biochemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Kritton Shay-Winkler
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marianne E. Emmert
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|