1
|
Schoenit A, Monfared S, Anger L, Rosse C, Venkatesh V, Balasubramaniam L, Marangoni E, Chavrier P, Mège RM, Doostmohammadi A, Ladoux B. Force transmission is a master regulator of mechanical cell competition. NATURE MATERIALS 2025:10.1038/s41563-025-02150-9. [PMID: 40087537 DOI: 10.1038/s41563-025-02150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 01/22/2025] [Indexed: 03/17/2025]
Abstract
Cell competition is a tissue surveillance mechanism for eliminating unwanted cells, being indispensable in development, infection and tumourigenesis. Although studies have established the role of biochemical mechanisms in this process, due to challenges in measuring forces in these systems, how mechanical forces determine the competition outcome remains unclear. Here we report a form of cell competition that is regulated by differences in force transmission capabilities, selecting for cell types with stronger intercellular adhesion. Direct force measurements in ex vivo tissues and different cell lines reveal that there is an increased mechanical activity at the interface between two competing cell types, which can lead to large stress fluctuations resulting in upward forces and cell elimination. We show how a winning cell type endowed with a stronger intercellular adhesion exhibits higher resistance to elimination and benefiting from efficient force transmission to the neighbouring cells. This cell elimination mechanism could have broad implications for keeping the strong force transmission ability for maintaining tissue boundaries and cell invasion pathology.
Collapse
Affiliation(s)
- Andreas Schoenit
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Siavash Monfared
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lucas Anger
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Carine Rosse
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institut Curie, Paris Université Sciences et Lettres, CNRS, Paris, France
| | - Varun Venkatesh
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Philippe Chavrier
- Institut Curie, Paris Université Sciences et Lettres, CNRS, Paris, France
| | - René-Marc Mège
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
| | | | - Benoit Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin and Max Planck Institute for the Science of Light, Erlangen, Germany.
| |
Collapse
|
2
|
Chaithanya KVS, Rozman J, Košmrlj A, Sknepnek R. Cell-Level Modelling of Homeostasis in Confined Epithelial Monolayers. JOURNAL OF ELASTICITY 2025; 157:29. [PMID: 40013236 PMCID: PMC11850549 DOI: 10.1007/s10659-025-10120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Tissue homeostasis, the biological process of maintaining a steady state in tissue via control of cell proliferation and death, is essential for the development, growth, maintenance, and proper function of living organisms. Disruptions to this process can lead to serious diseases and even death. In this study, we use the vertex model for the cell-level description of tissue mechanics to investigate the impact of the tissue environment and local mechanical properties of cells on homeostasis in confined epithelial tissues. We find a dynamic steady state, where the balance between cell divisions and removals sustains homeostasis, and characterise the homeostatic state in terms of cell count, tissue area, homeostatic pressure, and the cells' neighbour count distribution. This work, therefore, sheds light on the mechanisms underlying tissue homeostasis and highlights the importance of mechanics in its control.
Collapse
Affiliation(s)
- KVS Chaithanya
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
| | - Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU UK
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 USA
- Princeton Materials Institute, Princeton University, Princeton, NJ 08544 USA
| | - Rastko Sknepnek
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
| |
Collapse
|
3
|
Anjum S, Turner L, Atieh Y, Eisenhoffer GT, Davidson LA. Assessing mechanical agency during apical apoptotic cell extrusion. iScience 2024; 27:111017. [PMID: 39507245 PMCID: PMC11539584 DOI: 10.1016/j.isci.2024.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/31/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Homeostasis is necessary for epithelia to maintain barrier function and prevent the accumulation of defective cells. Unfit, excess, and dying cells in the larval zebrafish tail fin epidermis are removed via controlled cell death and extrusion. Extrusion coincides with oscillations of cell area, both in the extruding cell and its neighbors. Here, we develop a biophysical model of this process to explore the role of autonomous and non-autonomous mechanics. We vary biophysical properties and oscillatory behaviors of extruding cells and their neighbors along with tissue-wide cell density and viscosity. We find that cell autonomous processes are major contributors to the dynamics of extrusion, with the mechanical microenvironment providing a less pronounced contribution. We also find that some cells initially resist extrusion, influencing the duration of the expulsion process. Our model provides insights into the cellular dynamics and mechanics that promote elimination of unwanted cells from epithelia during homeostatic tissue maintenance.
Collapse
Affiliation(s)
- Sommer Anjum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Computational Modeling and Simulation Graduate Program, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Llaran Turner
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Youmna Atieh
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George T. Eisenhoffer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Nemati H, de Graaf J. The cellular Potts model on disordered lattices. SOFT MATTER 2024; 20:8337-8352. [PMID: 39283268 PMCID: PMC11404401 DOI: 10.1039/d4sm00445k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024]
Abstract
The cellular Potts model, also known as the Glazier-Graner-Hogeweg model, is a lattice-based approach by which biological tissues at the level of individual cells can be numerically studied. Traditionally, a square or hexagonal underlying lattice structure is assumed for two-dimensional systems, and this is known to introduce artifacts in the structure and dynamics of the model tissues. That is, on regular lattices, cells can assume shapes that are dictated by the symmetries of the underlying lattice. Here, we developed a variant of this method that can be applied to a broad class of (ir)regular lattices. We show that on an irregular lattice deriving from a fluid-like configuration, two types of artifacts can be removed. We further report on the transition between a fluid-like disordered and a solid-like hexagonally ordered phase present for monodisperse confluent cells as a function of their surface tension. This transition shows the hallmarks of a first-order phase transition and is different from the glass/jamming transitions commonly reported for the vertex and active Voronoi models. We emphasize this by analyzing the distribution of shape parameters found in our state space. Our analysis provides a useful reference for the future study of epithelia using the (ir)regular cellular Potts model.
Collapse
Affiliation(s)
- Hossein Nemati
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - J de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| |
Collapse
|
5
|
Chiang M, Hopkins A, Loewe B, Marchetti MC, Marenduzzo D. Intercellular friction and motility drive orientational order in cell monolayers. Proc Natl Acad Sci U S A 2024; 121:e2319310121. [PMID: 39302997 PMCID: PMC11459176 DOI: 10.1073/pnas.2319310121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/22/2024] [Indexed: 09/22/2024] Open
Abstract
Spatiotemporal patterns in multicellular systems are important to understanding tissue dynamics, for instance, during embryonic development and disease. Here, we use a multiphase field model to study numerically the behavior of a near-confluent monolayer of deformable cells with intercellular friction. Varying friction and cell motility drives a solid-liquid transition, and near the transition boundary, we find the emergence of local nematic order of cell deformation driven by shear-aligning cellular flows. Intercellular friction contributes to the monolayer's viscosity, which significantly increases the spatial correlation in the flow and, concomitantly, the extent of nematic order. We also show that local hexatic and nematic order are tightly coupled and propose a mechanical-geometric model for the colocalization of [Formula: see text] nematic defects and 5-7 disclination pairs, which are the structural defects in the hexatic phase. Such topological defects coincide with regions of high cell-cell overlap, suggesting that they may mediate cellular extrusion from the monolayer, as found experimentally. Our results delineate a mechanical basis for the recent observation of nematic and hexatic order in multicellular collectives in experiments and simulations and pinpoint a generic pathway to couple topological and physical effects in these systems.
Collapse
Affiliation(s)
- Michael Chiang
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| | - Austin Hopkins
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA93106
| | - Benjamin Loewe
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, EdinburghEH9 3FD, United Kingdom
- Facultad de Física, Pontificia Universidad Católica de Chile, Santiago7820436, Chile
| | - M. Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA93106
| | - Davide Marenduzzo
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| |
Collapse
|
6
|
Chiang M, Hopkins A, Loewe B, Marenduzzo D, Marchetti MC. Multiphase field model of cells on a substrate: From three dimensional to two dimensional. Phys Rev E 2024; 110:044403. [PMID: 39562868 DOI: 10.1103/physreve.110.044403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/19/2024] [Indexed: 11/21/2024]
Abstract
Multiphase field models have emerged as an important computational tool for understanding biological tissue while resolving single-cell properties. While they have successfully reproduced many experimentally observed behaviors of living tissue, the theoretical underpinnings have not been fully explored. We show that a two-dimensional version of the model, which is commonly employed to study tissue monolayers, can be derived from a three-dimensional version in the presence of a substrate. We also show how viscous forces, which arise from friction between different cells, can be included in the model. Finally, we numerically simulate a tissue monolayer and find that intercellular friction tends to solidify the tissue.
Collapse
|
7
|
Randriamanantsoa SJ, Raich MK, Saur D, Reichert M, Bausch AR. Coexisting mechanisms of luminogenesis in pancreatic cancer-derived organoids. iScience 2024; 27:110299. [PMID: 39055943 PMCID: PMC11269295 DOI: 10.1016/j.isci.2024.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Lumens are crucial features of the tissue architecture in both the healthy exocrine pancreas, where ducts shuttle enzymes from the acini to the intestine, and in the precancerous lesions of the highly lethal pancreatic ductal adenocarcinoma (PDAC), similarly displaying lumens that can further develop into cyst-like structures. Branched pancreatic-cancer derived organoids capture key architectural features of both the healthy and diseased pancreas, including lumens. However, their transition from a solid mass of cells to a hollow tissue remains insufficiently explored. Here, we show that organoids display two orthogonal but complementary lumen formation mechanisms: one relying on fluid intake for multiple microlumen nucleation, swelling and fusion, and the other involving the death of a central cell population, thereby hollowing out cavities. These results shed further light on the processes of luminogenesis, deepening our understanding of the early formation of PDAC precancerous lesions, including cystic neoplasia.
Collapse
Affiliation(s)
- Samuel J. Randriamanantsoa
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| | - Marion K. Raich
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| | - Dieter Saur
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner site Munich, 69120 Heidelberg, Germany
| | - Maximilian Reichert
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner site Munich, 69120 Heidelberg, Germany
- Technical University of Munich, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, Translational Pancreatic Cancer Research Center, 81675 Munich, Germany
| | - Andreas R. Bausch
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| |
Collapse
|
8
|
Monfared S, Ravichandran G, Andrade JE, Doostmohammadi A. Short-range correlation of stress chains near solid-to-liquid transition in active monolayers. J R Soc Interface 2024; 21:20240022. [PMID: 38715321 PMCID: PMC11077009 DOI: 10.1098/rsif.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Using a three-dimensional model of cell monolayers, we study the spatial organization of active stress chains as the monolayer transitions from a solid to a liquid state. The critical exponents that characterize this transition map the isotropic stress percolation onto the two-dimensional random percolation universality class, suggesting short-range stress correlations near this transition. This mapping is achieved via two distinct, independent pathways: (i) cell-cell adhesion and (ii) active traction forces. We unify our findings by linking the nature of this transition to high-stress fluctuations, distinctly linked to each pathway. The results elevate the importance of the transmission of mechanical information in dense active matter and provide a new context for understanding the non-equilibrium statistical physics of phase transition in active systems.
Collapse
Affiliation(s)
- Siavash Monfared
- Niels Bohr Institute, University of Copenhagen, Kobenhavn, 2100, Denmark
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, , CA, 91125, USA
| | - José E. Andrade
- Division of Engineering and Applied Science, California Institute of Technology, , CA, 91125, USA
| | | |
Collapse
|
9
|
Graham JN, Zhang G, Yeomans JM. Cell sorting by active forces in a phase-field model of cell monolayers. SOFT MATTER 2024; 20:2955-2960. [PMID: 38469688 DOI: 10.1039/d3sm01033c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Cell sorting, the segregation of cells with different properties into distinct domains, is a key phenomenon in biological processes such as embryogenesis. We use a phase-field model of a confluent cell layer to study the role of activity in cell sorting. We find that a mixture of cells with extensile or contractile dipolar activity, and which are identical apart from their activity, quickly sort into small, elongated patches which then grow slowly in time. We interpret the sorting as driven by the different diffusivity of the extensile and contractile cells, mirroring the ordering of Brownian particles connected to different hot and cold thermostats. We check that the free energy is not changed by either partial or complete sorting, thus confirming that activity can be responsible for the ordering even in the absence of thermodynamic mechanisms.
Collapse
Affiliation(s)
- James N Graham
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, University of Oxford, Oxford, OX1 3PU, UK.
| | - Guanming Zhang
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
- Simons Center for Computational Physical Chemistry, Department of Chemistry, New York University, New York 10003, USA
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, University of Oxford, Oxford, OX1 3PU, UK.
| |
Collapse
|
10
|
Bonn L, Ardaševa A, Doostmohammadi A. Elasticity tunes mechanical stress localization around active topological defects. SOFT MATTER 2023; 20:115-123. [PMID: 38050783 DOI: 10.1039/d3sm01113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Mechanical stresses are increasingly found to be associated with various biological functionalities. At the same time, topological defects are being identified across a diverse range of biological systems and are points of localized mechanical stress. It is therefore important to ask how mechanical stress localization around topological defects is controlled. Here, we use continuum simulations of nonequilibrium, fluctuating and active nematics to explore the patterns of stress localization, as well as their extent and intensity around topological defects. We find that by increasing the orientational elasticity of the material, the isotropic stress pattern around topological defects is changed substantially, from a stress dipole characterized by symmetric compression-tension regions around the core of the defect, to a localized stress monopole at the defect position. Moreover, we show that elastic anisotropy alters the extent and intensity of the stresses, and can result in the dominance of tension or compression around defects. Finally, including both nonequilibrium fluctuations and active stress generation, we find that the elastic constant tunes the relative effect of each, leading to the flipping of tension and compression regions around topological defects. This flipping of the tension-compression regions only by changing the elastic constant presents an interesting, simple, way of switching the dynamic behavior in active matter by changing a passive material property. We expect these findings to motivate further exploration tuning stresses in active biological materials by varying material properties of the constituent units.
Collapse
Affiliation(s)
- Lasse Bonn
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| | - Aleksandra Ardaševa
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| |
Collapse
|