1
|
Chen Z, Cai Y. An anti-Hebbian model for binocular visual plasticity and its attentional modulation. Commun Biol 2025; 8:418. [PMID: 40075123 PMCID: PMC11903768 DOI: 10.1038/s42003-025-07833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Monocular deprivation during the critical period impairs the cortical structure and visual function of the deprived eye. Conversely, transient occlusion of one eye in adults enhances the predominance of that eye. This counter-intuitive effect of short-term monocular deprivation is a form of homeostatic plasticity. However, whether this sensory plasticity requires attention, and the underlying neural mechanisms remain unclear. Here, through a psychophysical experiment, we demonstrate that the deprivation effect is dramatically attenuated in the absence of attention. We develop a neural computational model incorporating the Hebbian learning rule in interocular inhibitory synapses (i.e., anti-Hebbian learning) to explain the deprivation effect. Our model predicts both the boosting of the deprived eye and its dependence on attention. Moreover, it accounts for other forms of binocular plasticity, including plasticity observed in prolonged binocular rivalry. We suggest that short-term binocular plasticity arises from the plasticity in inhibitory connections between the two monocular pathways.
Collapse
Affiliation(s)
- Zhengbo Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yongchun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Wang J, He X, Bao M. Attention enhances short-term monocular deprivation effect. Psych J 2025; 14:84-93. [PMID: 39396922 PMCID: PMC11787881 DOI: 10.1002/pchj.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
Patching one eye of an adult human for a few hours has been found to promote the dominance of the patched eye, which is called short-term monocular deprivation effect. Interestingly, recent work has reported that prolonged eye-specific attention can also cause a shift of ocular dominance toward the unattended eye though visual inputs during adaptation are balanced across the eyes. Considering that patching blocks all input information from one eye, attention is presumably deployed to the opposite eye. Therefore, the short-term monocular deprivation effect might be, in part, mediated by eye-specific attentional modulation. Yet this question remains largely unanswered. To address this issue, here we asked participants to perform an attentive tracking task with one eye patched. During the tracking, participants were presented with both target gratings (attended stimuli) and distractor gratings (unattended stimuli) that were distinct from each other in fundamental visual features. Before and after one hour of tracking, they completed a binocular rivalry task to measure perceptual ocular dominance. A larger shift of ocular dominance toward the deprived eye was observed when the binocular rivalry testing gratings shared features with the target gratings during the tracking compared to when they shared features with the distractor gratings. This result, for the first time, suggests that attention can boost the strength of the short-term monocular deprivation effect. Therefore, the present study sheds new light on the role of attention in ocular dominance plasticity.
Collapse
Affiliation(s)
- Jue Wang
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xin He
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Zou L, Zhou C, Hess RF, Zhou J, Min SH. Daily dose-response from short-term monocular deprivation in adult humans. Ophthalmic Physiol Opt 2024; 44:564-575. [PMID: 38317572 DOI: 10.1111/opo.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Short-term monocular deprivation (MD) shifts sensory eye balance in favour of the previously deprived eye. The effect of MD on eye balance is significant but brief in adult humans. Recently, researchers and clinicians have attempted to implement MD in clinical settings for adults with impaired binocular vision. Although the effect of MD has been studied in detail in single-session protocols, what is not known is whether the effect of MD on eye balance deteriorates after repeated periods of MD (termed 'perceptual deterioration'). An answer to this question is relevant for two reasons. Firstly, the effect of MD (i.e., dose-response) should not decrease with repeated use if MD is to be used therapeutically (e.g., daily for weeks). Second, it bears upon the question of whether the neural basis of the effects of MD and contrast adaptation, a closely related phenomenon, is the same. The sensory change from contrast adaptation depends on recent experience. If the observer has recently experienced the same adaptation multiple times for consecutive days, then the adaptation effect will be smaller because contrast adaptation exhibits perceptual deterioration, so it is of interest to know if the effects of MD follow suit. This study measured the effect of 2-h MD for seven consecutive days on binocular balance of 15 normally sighted adults. We found that the shift in eye balance from MD stayed consistent, showing no signs of deterioration after subjects experienced multiple periods of MD. This finding shows no loss of effectiveness of repeated daily doses of MD if used therapeutically to rebalance binocular vision in otherwise normal individuals. Furthermore, ocular dominance plasticity, which is the basis of the effects of short-term MD, does not seem to share the property of 'perceptual deterioration' with contrast adaptation, suggesting different neural bases for these two related phenomena.
Collapse
Affiliation(s)
- Liying Zou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chenyan Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Quebec, Canada
| | - Jiawei Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Seung Hyun Min
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Xu A, Yao Y, Chen W, Lin Y, Li R, Wang R, Pan L, Ye Q, Pang Y, Wu X, Lin D, Zhao L, Jin L, Shao H, Liu W, Gao K, Zhang X, Yan P, Deng X, Wang D, Huang W, Zhang X, Dongye M, Li J, Lin H. Comparing the impact of three-dimensional digital visualization technology versus traditional microscopy on microsurgeons in microsurgery: a prospective self-controlled study. Int J Surg 2024; 110:1337-1346. [PMID: 38079600 PMCID: PMC10942219 DOI: 10.1097/js9.0000000000000950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 03/16/2024]
Abstract
BACKGROUND Emerging three-dimensional digital visualization technology (DVT) provides more advantages than traditional microscopy in microsurgery; however, its impact on microsurgeons' visual and nervous systems and delicate microsurgery is still unclear, which hinders the wider implementation of DVT in digital visualization for microsurgery. METHODS AND MATERIAL Forty-two microsurgeons from the Zhongshan Ophthalmic Center were enrolled in this prospective self-controlled study. Each microsurgeon consecutively performed 30 min conjunctival sutures using a three-dimensional digital display and a microscope, respectively. Visual function, autonomic nerve activity, and subjective symptoms were evaluated before and immediately after the operation. Visual functions, including accommodative lag, accommodative amplitude, near point of convergence and contrast sensitivity function (CSF), were measured by an expert optometrist. Heart rate variability was recorded by a wearable device for monitoring autonomic nervous activity. Subjective symptoms were evaluated by questionnaires. Microsurgical performance was assessed by the video-based Objective Structured Assessment of Technical Skill (OSATS) tool. RESULTS Accommodative lag decreased from 0.63 (0.18) diopters (D) to 0.55 (0.16) D ( P =0.014), area under the log contrast sensitivity function increased from 1.49 (0.15) to 1.52 (0.14) ( P =0.037), and heart rate variability decreased from 36.00 (13.54) milliseconds (ms) to 32.26 (12.35) ms ( P =0.004) after using the DVT, but the changes showed no differences compared to traditional microscopy ( P >0.05). No statistical significance was observed for global OSATS scores between the two rounds of operations [mean difference, 0.05 (95% CI: -1.17 to 1.08) points; P =0.95]. Subjective symptoms were quite mild after using both techniques. CONCLUSIONS The impact of DVT-based procedures on microsurgeons includes enhanced accommodation and sympathetic activity, but the changes and surgical performance are not significantly different from those of microscopy-based microsurgery. Our findings indicate that short-term use of DVT is reliable for microsurgery and the long-term effect of using DVT deserve more consideration.
Collapse
Affiliation(s)
- Andi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Ying Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Wenben Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Yuanfan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Ruiyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Ruixin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Liuqing Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Qingqing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Yangfei Pang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Duoru Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Lanqin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Ling Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Hang Shao
- Jiaxing Key Laboratory of Visual Big Data and Artificial Intelligence, Yangze Delta Region Institute of Tsinghua University, Jiaxing
| | - Wei Liu
- Jiaxing Key Laboratory of Visual Big Data and Artificial Intelligence, Yangze Delta Region Institute of Tsinghua University, Jiaxing
| | - Kun Gao
- Jiaxing Key Laboratory of Visual Big Data and Artificial Intelligence, Yangze Delta Region Institute of Tsinghua University, Jiaxing
| | | | - Pisong Yan
- Cloud Intelligent Care Tech. Ltd., Guangzhou
| | - Xinpei Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China
| | - Dongni Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Weiming Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Xulin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Meimei Dongye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Jinrong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
- Center for Precision Medicine and Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, People’s Republic of China
| |
Collapse
|
5
|
Gong L, Reynaud A, Hess RF, Zhou J. The Suppressive Basis of Ocular Dominance Changes Induced by Short-Term Monocular Deprivation in Normal and Amblyopic Adults. Invest Ophthalmol Vis Sci 2023; 64:2. [PMID: 37788002 PMCID: PMC10552874 DOI: 10.1167/iovs.64.13.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
Purpose We aimed to study the effect of short-term monocular deprivation on the suppressive interocular interactions in normals and amblyopes by using a dichoptic masking paradigm. Methods Nine adults with anisometropic or mixed amblyopia and 10 control adults participated in our study. The contrast sensitivity in discriminating a target Gabor dichoptically masked was measured before and after 2 hours of monocular deprivation. The mask consisted of bandpass-filtered noise. Both the target and the mask were horizontally oriented at the spatial frequency of 1.31 cpd. Deprivation was achieved using an opaque patch on the amblyopic eye of amblyopes and the dominant eye of controls. Results Results were similar in both controls and amblyopes. After 2 hours of monocular deprivation, the previously patched eye showed a significant increase in contrast sensitivity under dichoptic masking, which also suggested reduced suppressive effect from the nonpatched eye. Meanwhile, the contrast sensitivity of the nonpatched eye remained almost unchanged under dichoptic masking. Conclusions We demonstrate that the ocular dominance changes induced by short-term monocular deprivation-namely, the strengthening of the deprived eye's contribution-are associated with the unilateral and asymmetric changes in suppressive interaction. The suppression from the nondeprived eye is reduced after short-term monocular deprivation. This provides a better understanding of how inverse patching (patching of the amblyopic eye) could, by reducing the suppressive drive from the normally sighted (nondeprived) eye, form the basis of a new treatment for the binocular deficit in amblyopia.
Collapse
Affiliation(s)
- Ling Gong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Alexandre Reynaud
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Robert F. Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Jiawei Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Li J, Cheng Z, Li J, Li L, Chen L, Tao J, Wang Z, Wu D, Zhang P. Short-term monocular pattern deprivation reduces the internal additive noise of the visual system. Front Neurosci 2023; 17:1155034. [PMID: 37588514 PMCID: PMC10426733 DOI: 10.3389/fnins.2023.1155034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
Previous studies have shown that short-term monocular pattern deprivation can shift perceptual dominance in favor of the deprived eye. However, little is known about the effect of monocular pattern deprivation on contrast sensitivity (CS) and its corresponding mechanisms. Here, contrast sensitivity function (CSF) in the nondominant eye of normal subjects was evaluated before and after 150 min of monocular pattern deprivation. To obtain a CSF with high precision and efficiency before deprivation effect washout, a quick CSF (qCSF) method was used to assess CS over a wide range of spatial frequencies and at two external noise levels. We found that (1) monocular pattern deprivation effectively improved the CS of the deprived eye with larger effect on high spatial frequencies, (2) CS improvement only occurred when external noise was absent and its amount was spatial frequency dependent, and (3) a perceptual template model (PTM) revealed that decreased internal additive noise accounted for the mechanism of the monocular pattern derivation effect. These findings help us better understand the features of short-term monocular pattern deprivation and shed light on the treatment of amblyopia.
Collapse
Affiliation(s)
- Jinwei Li
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Zhenhui Cheng
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Jing Li
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Linghe Li
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Lijun Chen
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Jiayu Tao
- Department of Psychology, Chengde Medical University, Chengde, China
| | - Zeng Wang
- Department of Psychology, Hebei Medical University, Shijiazhuang, China
| | - Di Wu
- Military Medical Psychology School, Air Force Medical University, Xi’an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|