1
|
Qiu B, Zhang S, Ge S, Yu Z, Wang D, Li K, Yu X, Tang C, Du J, Jin H, Huang Y. Vascular smooth muscle cell-derived SO 2 sulphenylated interferon regulatory factor 1 to inhibit VSMC senescence. Front Pharmacol 2025; 16:1516885. [PMID: 40223932 PMCID: PMC11986361 DOI: 10.3389/fphar.2025.1516885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Background Vascular smooth muscle cell (VSMC) senescence is a critical driver of vascular aging and various age-related cardiovascular diseases. Endogenous sulfur dioxide (SO2), a newly identified key cardiovascular gaseous signaling mediator, accelerates collagen deposition and vascular remodeling in VSMCs when downregulated. However, its effects on VSMC senescence remain unclear. Objective This study focused on exploring the role of endogenous SO2 in VSMC senescence and its associated molecular pathways. Methods Aged mice (24 months old), VSMC-specific aspartate aminotransferase 1 (AAT1) knockout (VSMC-AAT1-KO) mice, D-galactose (D-gal)-treated aorta rings and rat VSMC line A7r5 were used in the experiments. AAT1 expression was detected by Western blot and single-cell RNA sequencing. Senescence markers Tp53, p21Cip/Waf, interleukin 1β (IL-1β) and IL6 expression were detected by Western blot and real-time quantitative PCR. Senescence-associated β-galactosidase (SA-β-gal) activity was detected using SA-β-gal staining kit. Sulphenylation of interferon regulatory factor 1 (IRF1) was detected using a biotin switch assay. The plasmid for mutant IRF1 (mutation of cysteine 83 to serine, C83S) were constructed by site-directed mutagenesis. Results The expression of AAT1, a key enzyme for SO2 production, was reduced in the aortic tissue of aged mice in comparison to young mice. VSMC-AAT1-KO mice exhibited elevated protein expression of senescence markers Tp53, p21Cip/Waf and γ-H2AX in the aortic tissue. AAT1 knockdown in VSMCs elevated expression of Tp53, p21Cip/Waf, IL-1β and IL-6, and enhanced SA-β-gal activity. While SO2 donor supplementation rescued VSMC senescence caused by AAT1 knockdown and blocked aortic ring aging induced by D-gal. Mechanistically, SO2 promoted IRF1 sulphenylation, inhibited IRF1 nuclear translocation, which in turn downregulated the expression of senescence markers and the activity of SA-β-gal. Furthermore, mutation of C83 in IRF1 abolished SO2-mediated IRF1 sulphenylation and blocked the inhibitory effect of SO2 on VSMC senescence. Conclusion Reduction of the endogenous SO2/AAT1 pathway played a crucial role in driving VSMC senescence. Endogenous SO2 counteracted VSMC senescence and vascular aging via the sulphenylation of IRF1 at C83.
Collapse
Affiliation(s)
- Bingquan Qiu
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, China
| | - Shangyue Zhang
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, China
| | - Shuang Ge
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhengyu Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Deqing Wang
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Health Science Center, Peking University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol 2024; 25:958-978. [PMID: 38654098 DOI: 10.1038/s41580-024-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands.
| |
Collapse
|
3
|
Jin C, Liao S, Lu G, Geng BD, Ye Z, Xu J, Ge G, Yang D. Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review). Mol Med Rep 2024; 30:162. [PMID: 38994760 PMCID: PMC11258599 DOI: 10.3892/mmr.2024.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
The treatment of patients with metastatic prostate cancer (PCa) is considered to be a long‑standing challenge. Conventional treatments for metastatic PCa, such as radical prostatectomy, radiotherapy and androgen receptor‑targeted therapy, induce senescence of PCa cells to a certain extent. While senescent cells can impede tumor growth through the restriction of cell proliferation and increasing immune clearance, the senescent microenvironment may concurrently stimulate the secretion of a senescence‑associated secretory phenotype and diminish immune cell function, which promotes PCa recurrence and metastasis. Resistance to established therapies is the primary obstacle in treating metastatic PCa as it can lead to progression towards an incurable state of disease. Therefore, understanding the molecular mechanisms that underly the progression of PCa is crucial for the development of novel therapeutic approaches. The present study reviews the phenomenon of treatment‑induced senescence in PCa, the dual role of senescence in PCa treatments and the mechanisms through which senescence promotes PCa metastasis. Furthermore, the present review discusses potential therapeutic strategies to target the aforementioned processes with the aim of providing insights into the evolving therapeutic landscape for the treatment of metastatic PCa.
Collapse
Affiliation(s)
- Cen Jin
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
- Medical Imaging School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Sijian Liao
- Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Guoliang Lu
- Department of Pediatrics, Anshun People's Hospital, Anshun, Guizhou 561000, P.R. China
| | - Bill D. Geng
- School of Natural Science, University of Texas at Austin, Austin, TX 78712, USA
| | - Zi Ye
- Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Guo Ge
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Dan Yang
- Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| |
Collapse
|
4
|
Dong Z, Luo Y, Yuan Z, Tian Y, Jin T, Xu F. Cellular senescence and SASP in tumor progression and therapeutic opportunities. Mol Cancer 2024; 23:181. [PMID: 39217404 PMCID: PMC11365203 DOI: 10.1186/s12943-024-02096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular senescence (CS), a permanent and irreversible arrest of the cell cycle and proliferation leading to the degeneration of cellular structure and function, has been implicated in various key physiological and pathological processes, particularly in cancer. Initially, CS was recognized as a barrier to tumorigenesis, serving as an intrinsic defense mechanism to protect cells from malignant transformation. However, increasing evidence suggests that senescent cells can promote tumor progression to overt malignancy, primarily through a set of factors known as senescence-associated secretory phenotypes (SASPs), including chemokines, growth factors, cytokines, and stromal metalloproteinases. These factors significantly reshape the tumor microenvironment (TME), enabling tumors to evade immune destruction. Interestingly, some studies have also suggested that SASPs may impede tumor development by enhancing immunosurveillance. These opposing roles highlight the complexity and heterogeneity of CS and SASPs in diverse cancers. Consequently, there has been growing interest in pharmacological interventions targeting CS or SASPs in cancer therapy, such as senolytics and senomorphics, to either promote the clearance of senescent cells or mitigate the harmful effects of SASPs. In this review, we will interpret the concept of CS, delve into the role of SASPs in reshaping the TME, and summarize recent advances in anti-tumor strategies targeting CS or SASPs.
Collapse
Affiliation(s)
- Zening Dong
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Zhangchen Yuan
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianqiang Jin
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Feng Xu
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Scanlan RL, Pease L, O'Keefe H, Martinez-Guimera A, Rasmussen L, Wordsworth J, Shanley D. Systematic transcriptomic analysis and temporal modelling of human fibroblast senescence. FRONTIERS IN AGING 2024; 5:1448543. [PMID: 39267611 PMCID: PMC11390594 DOI: 10.3389/fragi.2024.1448543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cellular senescence is a diverse phenotype characterised by permanent cell cycle arrest and an associated secretory phenotype (SASP) which includes inflammatory cytokines. Typically, senescent cells are removed by the immune system, but this process becomes dysregulated with age causing senescent cells to accumulate and induce chronic inflammatory signalling. Identifying senescent cells is challenging due to senescence phenotype heterogeneity, and senotherapy often requires a combinatorial approach. Here we systematically collected 119 transcriptomic datasets related to human fibroblasts, forming an online database describing the relevant variables for each study allowing users to filter for variables and genes of interest. Our own analysis of the database identified 28 genes significantly up- or downregulated across four senescence types (DNA damage induced senescence (DDIS), oncogene induced senescence (OIS), replicative senescence, and bystander induced senescence) compared to proliferating controls. We also found gene expression patterns of conventional senescence markers were highly specific and reliable for different senescence inducers, cell lines, and timepoints. Our comprehensive data supported several observations made in existing studies using single datasets, including stronger p53 signalling in DDIS compared to OIS. However, contrary to some early observations, both p16 and p21 mRNA levels rise quickly, depending on senescence type, and persist for at least 8-11 days. Additionally, little evidence was found to support an initial TGFβ-centric SASP. To support our transcriptomic analysis, we computationally modelled temporal protein changes of select core senescence proteins during DDIS and OIS, as well as perform knockdown interventions. We conclude that while universal biomarkers of senescence are difficult to identify, conventional senescence markers follow predictable profiles and construction of a framework for studying senescence could lead to more reproducible data and understanding of senescence heterogeneity.
Collapse
Affiliation(s)
- R-L Scanlan
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Pease
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - H O'Keefe
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - A Martinez-Guimera
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Rasmussen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Wordsworth
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - D Shanley
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
6
|
Shin CH, Rossi M, Anerillas C, Martindale JL, Yang X, Ji E, Pal A, Munk R, Yang JH, Tsitsipatis D, Mazan-Mamczarz K, Abdelmohsen K, Gorospe M. Increased ANKRD1 Levels in Early Senescence Mediated by RBMS1-Elicited ANKRD1 mRNA Stabilization. Mol Cell Biol 2024; 44:194-208. [PMID: 38769646 PMCID: PMC11123458 DOI: 10.1080/10985549.2024.2350540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Cellular senescence is a dynamic biological process triggered by sublethal cell damage and driven by specific changes in gene expression programs. We recently identified ANKRD1 (ankyrin repeat domain 1) as a protein strongly elevated after triggering senescence in fibroblasts. Here, we set out to investigate the mechanisms driving the elevated production of ANKRD1 in the early stages of senescence. Our results indicated that the rise in ANKRD1 levels after triggering senescence using etoposide (Eto) was the result of moderate increases in transcription and translation, and robust mRNA stabilization. Antisense oligomer (ASO) pulldown followed by mass spectrometry revealed a specific interaction of the RNA-binding protein RBMS1 with ANKRD1 mRNA that was confirmed by ribonucleoprotein immunoprecipitation analysis. RBMS1 abundance decreased in the nucleus and increased in the cytoplasm during Eto-induced senescence; in agreement with the hypothesis that RBMS1 may participate in post-transcriptional stabilization of ANKRD1 mRNA, silencing RBMS1 reduced, while overexpressing RBMS1 enhanced ANKRD1 mRNA half-life after Eto treatment. A segment proximal to the ANKRD1 coding region was identified as binding RBMS1 and conferring RBMS1-dependent increased expression of a heterologous reporter. We propose that RBMS1 increases expression of ANKRD1 during the early stages of senescence by stabilizing ANKRD1 mRNA.
Collapse
Affiliation(s)
- Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Eunbyul Ji
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Apala Pal
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Rex N, Melk A, Schmitt R. Cellular senescence and kidney aging. Clin Sci (Lond) 2023; 137:1805-1821. [PMID: 38126209 PMCID: PMC10739085 DOI: 10.1042/cs20230140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Life expectancy is increasing worldwide, and by 2050 the proportion of the world's population over 65 years of age is estimated to surpass 1.5 billion. Kidney aging is associated with molecular and physiological changes that cause a loss of renal function and of regenerative potential. As the aging population grows, it is crucial to understand the mechanisms underlying these changes, as they increase the susceptibility to developing acute kidney injury (AKI) and chronic kidney disease (CKD). Various cellular processes and molecular pathways take part in the complex process of kidney aging. In this review, we will focus on the phenomenon of cellular senescence as one of the involved mechanisms at the crossroad of kidney aging, age-related disease, and CKD. We will highlight experimental and clinical findings about the role of cellular senescence in kidney aging and CKD. In addition, we will review challenges in senescence research and emerging therapeutic aspects. We will highlight the great potential of senolytic strategies for the elimination of harmful senescent cells to promote healthy kidney aging and to avoid age-related disease and CKD. This review aims to give insight into recent discoveries and future developments, providing a comprehensive overview of current knowledge on cellular senescence and anti-senescent therapies in the kidney field.
Collapse
Affiliation(s)
- Nikolai Rex
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Medical School Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Medical School Hannover, Germany
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
8
|
Jiang Q, Zhou J, Chen Q, Huang Y, Yang C, Liu C. Construction and experimental validation of a macrophage cell senescence-related gene signature to evaluate the prognosis, immunotherapeutic sensitivity, and chemotherapy response in bladder cancer. Funct Integr Genomics 2023; 23:228. [PMID: 37423913 DOI: 10.1007/s10142-023-01163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Tumor-associated macrophages (TAMs) are pivotal components of tumor microenvironment (TME), and senescent TAMs contribute to the alternation of the profiles of TME. However, the potential biological mechanisms and the prognosis value of senescent macrophages are largely unknown, especially in bladder cancer (BLCA). Based on the single-cell RNA sequencing of a primary BLCA sample, 23 macrophage-related genes were identified. Genomic difference analysis, LASSO, and Cox regression were used to develop the risk model. TCGA-BLCA cohort (n = 406) was utilized as the training cohort, and then, three independent cohorts (n = 90, n = 221, n = 165) from Gene Expression Omnibus, clinical samples from the local hospital (n = 27), and in vitro cell experiments were used for external validation. Aldo-keto reductase family 1 member B (AKR1B1), inhibitor of DNA binding 1 (ID1), and transforming growth factor beta 1 (TGFB1I1) were determined and included in the predictive model. The model serves as a promising tool to evaluate the prognosis in BLCA (pooled hazard ratio = 2.51, 95% confidence interval = [1.43; 4.39]). The model was also effective for the prediction of immunotherapeutic sensitivity and chemotherapy treatment outcomes, which were further confirmed by IMvigor210 cohort (P < 0.01) and GDSC dataset, respectively. Twenty-seven BLCA samples from the local hospital proved that the risk model was associated with the malignant degree (P < 0.05). At last, the human macrophage THP-1 and U937 cells were treated with H2O2 to mimic the senescent process in macrophage, and the expressions of these molecules in the model were detected (all P < 0.05).Overall, a macrophage cell senescence-related gene signature was constructed to predict the prognosis, immunotherapeutic response, and chemotherapy sensitivity in BLCA, which provides novel insights to uncover the underlying mechanisms of macrophage senescence.
Collapse
Affiliation(s)
- Qijun Jiang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Junhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Qi Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Yuliang Huang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Cundong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
9
|
Alba C, Mozota M, Arroyo R, Gómez-Torres N, Castro I, Rodríguez JM. Influence of SARS-CoV-2 Status and Aging on the Nasal and Fecal Immunological Profiles of Elderly Individuals Living in Nursing Homes. Viruses 2023; 15:1404. [PMID: 37376702 DOI: 10.3390/v15061404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
In the frame of SARS-CoV-2 infection, studies regarding cytokine profiling of mucosal-related samples are scarce despite being the primary infection sites. The objective of this study was to compare the nasal and fecal inflammatory profiles of elderly individuals living in a nursing home highly affected by COVID-19 (ELD1) with those of elderly individuals living in a nursing home with no cases of SARS-CoV-2 infection (ELD2) and, also, with those of healthy SARS-CoV-2-negative younger adults (YHA). BAFF/TNFSF13B, IL6, IL10 and TNF-α (immunological hallmarks of SARS-CoV-2 infection) were the only immune factors whose concentrations were different in the three groups. Their highest concentrations were achieved in the ELD1 group. Nasal and fecal concentrations of a wide number of pro-inflammatory cytokines were similar in the ELD1 and ELD2 groups but higher than those found in the YHA samples. These results reinforce the hypothesis that immunosenescence and inflammaging rendered the elderly as a highly vulnerable population to a neo-infection, such as COVID-19, which was evidenced during the first pandemic waves.
Collapse
Affiliation(s)
- Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marta Mozota
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Natalia Gómez-Torres
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irma Castro
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|