1
|
Periasamy A, Ornelas P, Bausewein T, Mitchell N, Zhao J, Quinn LM, Kuehlbrandt W, Gulbis JM. Structure of an ex vivoDrosophila TOM complex determined by single-particle cryoEM. IUCRJ 2025; 12:49-61. [PMID: 39575538 PMCID: PMC11707698 DOI: 10.1107/s2052252524011011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025]
Abstract
Most mitochondrial precursor proteins are encoded in the cell nucleus and synthesized on cytoplasmic ribosomes. The translocase of the outer membrane (TOM) is the main protein-import pore of mitochondria, recognizing nascent precursors of mitochondrially targeted proteins and transferring them across the outer membrane. A 3.3 Å resolution map and molecular model of a TOM complex from Drosophila melanogaster, obtained by single-particle electron cryomicroscopy, is presented. As the first reported structure of a transgenic protein expressed and purified ex vivo from Drosophila, the method provides impetus for parallel structural and genetic analyses of protein complexes linked to human pathology. The core TOM complex extracted from native membranes of the D. melanogaster retina contains transgenic Tom40 co-assembled with four endogenous TOM components: Tom22, Tom5, Tom6 and Tom7. The Drosophila TOM structure presented here shows that the human and Drosophila TOM are very similar, with small conformational changes at two subunit interfaces attributable to variation in lipid-binding residues. The new structure provides an opportunity to pinpoint general features that differentiate the TOM structures of higher and unicellular eukaryotes. While the quaternary fold of the assembly is retained, local nuances of structural elements implicated in precursor import are indicative of subtle evolutionary change.
Collapse
Affiliation(s)
- Agalya Periasamy
- Structural Biology DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoria3052Australia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoria3052Australia
| | - Pamela Ornelas
- Department of Structural BiologyMax Planck Institute of BiophysicsMax-von-Laue-Strasse 360438Frankfurt am MainGermany
| | - Thomas Bausewein
- Department of Structural BiologyMax Planck Institute of BiophysicsMax-von-Laue-Strasse 360438Frankfurt am MainGermany
| | - Naomi Mitchell
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical ResearchAustralian National University (ANU)CanberraACTAustralia
| | - Jiamin Zhao
- Structural Biology DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoria3052Australia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoria3052Australia
| | - Leonie M. Quinn
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical ResearchAustralian National University (ANU)CanberraACTAustralia
| | - Werner Kuehlbrandt
- Department of Structural BiologyMax Planck Institute of BiophysicsMax-von-Laue-Strasse 360438Frankfurt am MainGermany
| | - Jacqueline M. Gulbis
- Structural Biology DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoria3052Australia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoria3052Australia
| |
Collapse
|
2
|
Grivennikova VG, Gladyshev GV, Zharova TV, Borisov VB. Proton-Translocating NADH-Ubiquinone Oxidoreductase: Interaction with Artificial Electron Acceptors, Inhibitors, and Potential Medicines. Int J Mol Sci 2024; 25:13421. [PMID: 39769185 PMCID: PMC11677225 DOI: 10.3390/ijms252413421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Proton-translocating NADH-ubiquinone oxidoreductase (complex I) catalyzes the oxidation of NADH by ubiquinone accompanied by the transmembrane transfer of four protons, thus contributing to the formation of a proton motive force (pmf) across the coupling membranes of mitochondria and bacteria, which drives ATP synthesis in oxidative phosphorylation. In recent years, great progress has been achieved in resolving complex I structure by means of X-ray crystallography and high-resolution cryo-electron microscopy, which has led to the formulation of detailed hypotheses concerning the molecular mechanism of coupling of the redox reaction to vectorial proton translocation. To test and probe proposed mechanisms, a comprehensive study of complex I using other methods including molecular dynamics and a variety of biochemical studies such as kinetic and inhibitory analysis is required. Due to complex I being a major electron entry point for oxidative metabolism, various mutations of the enzyme lead to the development of severe pathologies and/or are associated with human metabolic disorders and have been well documented. This review examines current information on the structure and subunit composition of complex I of eukaryotes and prokaryotes, reactions catalyzed by this enzyme, and ways to regulate them. The review also discusses biomedical aspects related to the enzyme in light of recent findings.
Collapse
Affiliation(s)
- Vera G. Grivennikova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Grigory V. Gladyshev
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Tatyana V. Zharova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
3
|
Leader DP, Naseem MT, Halberg KV. BeetleAtlas: An Ontogenetic and Tissue-specific Transcriptomic Atlas of the Red Flour Beetle Tribolium castaneum. J Mol Biol 2024; 436:168520. [PMID: 39237197 DOI: 10.1016/j.jmb.2024.168520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 09/07/2024]
Abstract
The red flour beetle Tribolium castaneum has emerged as a powerful model in insect functional genomics. However, a major limitation in the field is the lack of a detailed spatio-temporal view of the genetic signatures underpinning the function of distinct tissues and life stages. Here, we present an ontogenetic and tissue-specific web-based resource for Tribolium transcriptomics: BeetleAtlas (https://www.beetleatlas.org). This web application provides access to a database populated with quantitative expression data for nine adult and seven larval tissues, as well as for four embryonic stages of Tribolium. BeetleAtlas allows one to search for individual Tribolium genes to obtain values of both total gene expression and enrichment in different tissues, together with data for individual isoforms. To facilitate cross-species studies, one can also use Drosophila melanogaster gene identifiers to search for related Tribolium genes. For retrieved genes there are options to identify and display the tissue expression of related Tribolium genes or homologous Drosophila genes. Five additional search modes are available to find genes conforming to any of the following criteria: exhibiting high expression in a particular tissue; showing significant differences in expression between larva and adult; having a peak of expression at a specific stage of embryonic development; belonging to a particular functional category; and displaying a pattern of tissue expression similar to that of a query gene. We illustrate how the different feaures of BeetleAtlas can be used to illuminate our understanding of the genetic mechanisms underpinning the biology of what is the largest animal group on earth.
Collapse
Affiliation(s)
- David P Leader
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Muhammad T Naseem
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Kenneth V Halberg
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Copenhagen DK-2100, Denmark.
| |
Collapse
|
4
|
Maldonado M. Plant supercomplex I + III2 structure and function: implications for the growing field. Biochem Soc Trans 2024; 52:1647-1659. [PMID: 39177070 PMCID: PMC11668291 DOI: 10.1042/bst20230947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Mitochondrial respiration is major source of chemical energy for all free-living eukaryotes. Nevertheless, the mechanisms of the respiratory complexes and supercomplexes remain poorly understood. Here, I review recent structural and functional investigations of plant supercomplex I + III2 from Arabidopsis thaliana and Vigna radiata. I discuss commonalities, open questions and implications for complex I, complex III2 and supercomplexes in plants and non-plants. Studies across further clades will enhance our understanding of respiration and the potential universal mechanisms of its complexes and supercomplexes.
Collapse
Affiliation(s)
- Maria Maldonado
- Department of Plant Biology, University of California, Davis, Davis, CA, U.S.A
| |
Collapse
|
5
|
Othonicar MF, Garcia GS, Oliveira MT. The alternative enzymes-bearing tunicates lack multiple widely distributed genes coding for peripheral OXPHOS subunits. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149046. [PMID: 38642871 DOI: 10.1016/j.bbabio.2024.149046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
The respiratory chain alternative enzymes (AEs) NDX and AOX from the tunicate Ciona intestinalis (Ascidiacea) have been xenotopically expressed and characterized in human cells in culture and in the model organisms Drosophila melanogaster and mouse, with the purpose of developing bypass therapies to combat mitochondrial diseases in human patients with defective complexes I and III/IV, respectively. The fact that the genes coding for NDX and AOX have been lost from genomes of evolutionarily successful animal groups, such as vertebrates and insects, led us to investigate if the composition of the respiratory chain of Ciona and other tunicates differs significantly from that of humans and Drosophila, to accommodate the natural presence of AEs. We have failed to identify in tunicate genomes fifteen orthologous genes that code for subunits of the respiratory chain complexes; all of these putatively missing subunits are peripheral to complexes I, III and IV in mammals, and many are important for complex-complex interaction in supercomplexes (SCs), such as NDUFA11, UQCR11 and COX7A. Modeling of all respiratory chain subunit polypeptides of Ciona indicates significant structural divergence that is consistent with the lack of these fifteen clear orthologous subunits. We also provide evidence using Ciona AOX expressed in Drosophila that this AE cannot access the coenzyme Q pool reduced by complex I, but it is readily available to oxidize coenzyme Q molecules reduced by glycerophosphate oxidase, a mitochondrial inner membrane-bound dehydrogenase that is not involved in SCs. Altogether, our results suggest that Ciona AEs might have evolved in a mitochondrial inner membrane environment much different from that of mammals and insects, possibly without SCs; this correlates with the preferential functional interaction between these AEs and non-SC dehydrogenases in heterologous mammalian and insect systems. We discuss the implications of these findings for the applicability of Ciona AEs in human bypass therapies and for our understanding of the evolution of animal respiratory chain.
Collapse
Affiliation(s)
- Murilo F Othonicar
- Departamento de Biotecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Geovana S Garcia
- Departamento de Biotecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Marcos T Oliveira
- Departamento de Biotecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil.
| |
Collapse
|
6
|
Zheng W, Chai P, Zhu J, Zhang K. High-resolution in situ structures of mammalian respiratory supercomplexes. Nature 2024; 631:232-239. [PMID: 38811722 PMCID: PMC11222160 DOI: 10.1038/s41586-024-07488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Mitochondria play a pivotal part in ATP energy production through oxidative phosphorylation, which occurs within the inner membrane through a series of respiratory complexes1-4. Despite extensive in vitro structural studies, determining the atomic details of their molecular mechanisms in physiological states remains a major challenge, primarily because of loss of the native environment during purification. Here we directly image porcine mitochondria using an in situ cryo-electron microscopy approach. This enables us to determine the structures of various high-order assemblies of respiratory supercomplexes in their native states. We identify four main supercomplex organizations: I1III2IV1, I1III2IV2, I2III2IV2 and I2III4IV2, which potentially expand into higher-order arrays on the inner membranes. These diverse supercomplexes are largely formed by 'protein-lipids-protein' interactions, which in turn have a substantial impact on the local geometry of the surrounding membranes. Our in situ structures also capture numerous reactive intermediates within these respiratory supercomplexes, shedding light on the dynamic processes of the ubiquinone/ubiquinol exchange mechanism in complex I and the Q-cycle in complex III. Structural comparison of supercomplexes from mitochondria treated under different conditions indicates a possible correlation between conformational states of complexes I and III, probably in response to environmental changes. By preserving the native membrane environment, our approach enables structural studies of mitochondrial respiratory supercomplexes in reaction at high resolution across multiple scales, from atomic-level details to the broader subcellular context.
Collapse
Affiliation(s)
- Wan Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jiapeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Grba DN, Wright JJ, Yin Z, Fisher W, Hirst J. Molecular mechanism of the ischemia-induced regulatory switch in mammalian complex I. Science 2024; 384:1247-1253. [PMID: 38870289 DOI: 10.1126/science.ado2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Respiratory complex I is an efficient driver for oxidative phosphorylation in mammalian mitochondria, but its uncontrolled catalysis under challenging conditions leads to oxidative stress and cellular damage. Ischemic conditions switch complex I from rapid, reversible catalysis into a dormant state that protects upon reoxygenation, but the molecular basis for the switch is unknown. We combined precise biochemical definition of complex I catalysis with high-resolution cryo-electron microscopy structures in the phospholipid bilayer of coupled vesicles to reveal the mechanism of the transition into the dormant state, modulated by membrane interactions. By implementing a versatile membrane system to unite structure and function, attributing catalytic and regulatory properties to specific structural states, we define how a conformational switch in complex I controls its physiological roles.
Collapse
Affiliation(s)
| | | | | | | | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
8
|
Djurabekova A, Lasham J, Zdorevskyi O, Zickermann V, Sharma V. Long-range electron proton coupling in respiratory complex I - insights from molecular simulations of the quinone chamber and antiporter-like subunits. Biochem J 2024; 481:499-514. [PMID: 38572757 DOI: 10.1042/bcj20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Respiratory complex I is a redox-driven proton pump. Several high-resolution structures of complex I have been determined providing important information about the putative proton transfer paths and conformational transitions that may occur during catalysis. However, how redox energy is coupled to the pumping of protons remains unclear. In this article, we review biochemical, structural and molecular simulation data on complex I and discuss several coupling models, including the key unresolved mechanistic questions. Focusing both on the quinone-reductase domain as well as the proton-pumping membrane-bound domain of complex I, we discuss a molecular mechanism of proton pumping that satisfies most experimental and theoretical constraints. We suggest that protonation reactions play an important role not only in catalysis, but also in the physiologically-relevant active/deactive transition of complex I.
Collapse
Affiliation(s)
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Laube E, Schiller J, Zickermann V, Vonck J. Using cryo-EM to understand the assembly pathway of respiratory complex I. Acta Crystallogr D Struct Biol 2024; 80:159-173. [PMID: 38372588 PMCID: PMC10910544 DOI: 10.1107/s205979832400086x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the first component of the mitochondrial respiratory chain. In recent years, high-resolution cryo-EM studies of complex I from various species have greatly enhanced the understanding of the structure and function of this important membrane-protein complex. Less well studied is the structural basis of complex I biogenesis. The assembly of this complex of more than 40 subunits, encoded by nuclear or mitochondrial DNA, is an intricate process that requires at least 20 different assembly factors in humans. These are proteins that are transiently associated with building blocks of the complex and are involved in the assembly process, but are not part of mature complex I. Although the assembly pathways have been studied extensively, there is limited information on the structure and molecular function of the assembly factors. Here, the insights that have been gained into the assembly process using cryo-EM are reviewed.
Collapse
Affiliation(s)
- Eike Laube
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jonathan Schiller
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Curcio R, Frattaruolo L, Marra F, Pesole G, Vozza A, Cappello AR, Fiorillo M, Lauria G, Ahmed A, Fiermonte G, Capobianco L, Dolce V. Two functionally different mitochondrial phosphate carriers support Drosophila melanogaster OXPHOS throughout distinct developmental stages. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119615. [PMID: 37898376 DOI: 10.1016/j.bbamcr.2023.119615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Federica Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Graziano Pesole
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Angelo Vozza
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Graziantonio Lauria
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy.
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
11
|
Steinmetz EL, Noh S, Klöppel C, Fuhr MF, Bach N, Raffael ME, Hildebrandt K, Wittling F, Jann D, Walldorf U. Generation of Mutants from the 57B Region of Drosophila melanogaster. Genes (Basel) 2023; 14:2047. [PMID: 38002990 PMCID: PMC10671637 DOI: 10.3390/genes14112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The 57B region of Drosophila melanogaster includes a cluster of the three homeobox genes orthopedia (otp), Drosophila Retinal homeobox (DRx), and homeobrain (hbn). In an attempt to isolate mutants for these genes, we performed an EMS mutagenesis and isolated lethal mutants from the 57B region, among them mutants for otp, DRx, and hbn. With the help of two newly generated deletions from the 57B region, we mapped additional mutants to specific chromosomal intervals and identified several of these mutants from the 57B region molecularly. In addition, we generated mutants for CG15651 and RIC-3 by gene targeting and mutants for the genes CG9344, CG15649, CG15650, and ND-B14.7 using the CRISPR/Cas9 system. We determined the lethality period during development for most isolated mutants. In total, we analysed alleles from nine different genes from the 57B region of Drosophila, which could now be used to further explore the functions of the corresponding genes in the future.
Collapse
Affiliation(s)
- Eva Louise Steinmetz
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Zoology & Physiology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building B2.1, D-66123 Saarbrücken, Germany
| | - Sandra Noh
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Christine Klöppel
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Martin F. Fuhr
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Nicole Bach
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Mona Evelyn Raffael
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Kirsten Hildebrandt
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Fabienne Wittling
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, D-66123 Saarbrücken, Germany
| | - Doris Jann
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Medical Biochemistry & Molecular Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 45.2, D-66421 Homburg, Germany
| | - Uwe Walldorf
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| |
Collapse
|
12
|
Brischigliaro M, Cabrera-Orefice A, Arnold S, Viscomi C, Zeviani M, Fernández-Vizarra E. Structural rather than catalytic role for mitochondrial respiratory chain supercomplexes. eLife 2023; 12:RP88084. [PMID: 37823874 PMCID: PMC10569793 DOI: 10.7554/elife.88084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Mammalian mitochondrial respiratory chain (MRC) complexes are able to associate into quaternary structures named supercomplexes (SCs), which normally coexist with non-bound individual complexes. The functional significance of SCs has not been fully clarified and the debate has been centered on whether or not they confer catalytic advantages compared with the non-bound individual complexes. Mitochondrial respiratory chain organization does not seem to be conserved in all organisms. In fact, and differently from mammalian species, mitochondria from Drosophila melanogaster tissues are characterized by low amounts of SCs, despite the high metabolic demands and MRC activity shown by these mitochondria. Here, we show that attenuating the biogenesis of individual respiratory chain complexes was accompanied by increased formation of stable SCs, which are missing in Drosophila melanogaster in physiological conditions. This phenomenon was not accompanied by an increase in mitochondrial respiratory activity. Therefore, we conclude that SC formation is necessary to stabilize the complexes in suboptimal biogenesis conditions, but not for the enhancement of respiratory chain catalysis.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Massimo Zeviani
- Department of Neurosciences, University of PadovaPadovaItaly
| | - Erika Fernández-Vizarra
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| |
Collapse
|
13
|
Murari A, Rhooms SK, Vimal D, Hossain KFB, Saini S, Villanueva M, Schlame M, Owusu-Ansah E. Phospholipids can regulate complex I assembly independent of their role in maintaining mitochondrial membrane integrity. Cell Rep 2023; 42:112846. [PMID: 37516961 DOI: 10.1016/j.celrep.2023.112846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/22/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Several phospholipid (PL) molecules are intertwined with some mitochondrial complex I (CI) subunits in the membrane domain of CI, but their function is unclear. We report that when the Drosophila melanogaster ortholog of the intramitochondrial PL transporter, STARD7, is severely disrupted, assembly of the oxidative phosphorylation (OXPHOS) system is impaired, and the biogenesis of several CI subcomplexes is hampered. However, intriguingly, a restrained knockdown of STARD7 impairs the incorporation of NDUFS5 and NDUFA1 into the proximal part of the CI membrane domain without directly affecting the incorporation of subunits in the distal part of the membrane domain, OXPHOS complexes already assembled, or mitochondrial cristae integrity. Importantly, the restrained knockdown of STARD7 appears to induce a modest amount of cardiolipin remodeling, indicating that there could be some alteration in the composition of the mitochondrial phospholipidome. We conclude that PLs can regulate CI biogenesis independent of their role in maintaining mitochondrial membrane integrity.
Collapse
Affiliation(s)
- Anjaneyulu Murari
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shauna-Kay Rhooms
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Divya Vimal
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kaniz Fatima Binte Hossain
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sanjay Saini
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maximino Villanueva
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Schlame
- Departments of Anesthesiology and Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Kim H, Saura P, Pöverlein MC, Gamiz-Hernandez AP, Kaila VRI. Quinone Catalysis Modulates Proton Transfer Reactions in the Membrane Domain of Respiratory Complex I. J Am Chem Soc 2023; 145:17075-17086. [PMID: 37490414 PMCID: PMC10416309 DOI: 10.1021/jacs.3c03086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 07/27/2023]
Abstract
Complex I is a redox-driven proton pump that drives electron transport chains and powers oxidative phosphorylation across all domains of life. Yet, despite recently resolved structures from multiple organisms, it still remains unclear how the redox reactions in Complex I trigger proton pumping up to 200 Å away from the active site. Here, we show that the proton-coupled electron transfer reactions during quinone reduction drive long-range conformational changes of conserved loops and trans-membrane (TM) helices in the membrane domain of Complex I from Yarrowia lipolytica. We find that the conformational switching triggers a π → α transition in a TM helix (TM3ND6) and establishes a proton pathway between the quinone chamber and the antiporter-like subunits, responsible for proton pumping. Our large-scale (>20 μs) atomistic molecular dynamics (MD) simulations in combination with quantum/classical (QM/MM) free energy calculations show that the helix transition controls the barrier for proton transfer reactions by wetting transitions and electrostatic effects. The conformational switching is enabled by re-arrangements of ion pairs that propagate from the quinone binding site to the membrane domain via an extended network of conserved residues. We find that these redox-driven changes create a conserved coupling network within the Complex I superfamily, with point mutations leading to drastic activity changes and mitochondrial disorders. On a general level, our findings illustrate how catalysis controls large-scale protein conformational changes and enables ion transport across biological membranes.
Collapse
Affiliation(s)
- Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | | | - Ana P. Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
15
|
van Strien J, Evers F, Lutikurti M, Berendsen SL, Garanto A, van Gemert GJ, Cabrera-Orefice A, Rodenburg RJ, Brandt U, Kooij TWA, Huynen MA. Comparative Clustering (CompaCt) of eukaryote complexomes identifies novel interactions and sheds light on protein complex evolution. PLoS Comput Biol 2023; 19:e1011090. [PMID: 37549177 PMCID: PMC10434966 DOI: 10.1371/journal.pcbi.1011090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/17/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Complexome profiling allows large-scale, untargeted, and comprehensive characterization of protein complexes in a biological sample using a combined approach of separating intact protein complexes e.g., by native gel electrophoresis, followed by mass spectrometric analysis of the proteins in the resulting fractions. Over the last decade, its application has resulted in a large collection of complexome profiling datasets. While computational methods have been developed for the analysis of individual datasets, methods for large-scale comparative analysis of complexomes from multiple species are lacking. Here, we present Comparative Clustering (CompaCt), that performs fully automated integrative analysis of complexome profiling data from multiple species, enabling systematic characterization and comparison of complexomes. CompaCt implements a novel method for leveraging orthology in comparative analysis to allow systematic identification of conserved as well as taxon-specific elements of the analyzed complexomes. We applied this method to a collection of 53 complexome profiles spanning the major branches of the eukaryotes. We demonstrate the ability of CompaCt to robustly identify the composition of protein complexes, and show that integrated analysis of multiple datasets improves characterization of complexes from specific complexome profiles when compared to separate analyses. We identified novel candidate interactors and complexes in a number of species from previously analyzed datasets, like the emp24, the V-ATPase and mitochondrial ATP synthase complexes. Lastly, we demonstrate the utility of CompaCt for the automated large-scale characterization of the complexome of the mosquito Anopheles stephensi shedding light on the evolution of metazoan protein complexes. CompaCt is available from https://github.com/cmbi/compact-bio.
Collapse
Affiliation(s)
- Joeri van Strien
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Felix Evers
- Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Madhurya Lutikurti
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stijn L. Berendsen
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alejandro Garanto
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geert-Jan van Gemert
- Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Richard J. Rodenburg
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pediatrics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Taco W. A. Kooij
- Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
16
|
Brischigliaro M, Fernandez-Vizarra E, Viscomi C. Mitochondrial Neurodegeneration: Lessons from Drosophila melanogaster Models. Biomolecules 2023; 13:378. [PMID: 36830747 PMCID: PMC9953451 DOI: 10.3390/biom13020378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The fruit fly-i.e., Drosophila melanogaster-has proven to be a very useful model for the understanding of basic physiological processes, such as development or ageing. The availability of straightforward genetic tools that can be used to produce engineered individuals makes this model extremely interesting for the understanding of the mechanisms underlying genetic diseases in physiological models. Mitochondrial diseases are a group of yet-incurable genetic disorders characterized by the malfunction of the oxidative phosphorylation system (OXPHOS), which is the highly conserved energy transformation system present in mitochondria. The generation of D. melanogaster models of mitochondrial disease started relatively recently but has already provided relevant information about the molecular mechanisms and pathological consequences of mitochondrial dysfunction. Here, we provide an overview of such models and highlight the relevance of D. melanogaster as a model to study mitochondrial disorders.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Erika Fernandez-Vizarra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Centre for the Study of Neurodegeneration (CESNE), University of Padova, 35131 Padova, Italy
| |
Collapse
|