1
|
Xiong Y, Knoedler S, Alfertshofer M, Kim BS, Jiang D, Liu G, Rinkevich Y, Mi B. Mechanisms and therapeutic opportunities in metabolic aberrations of diabetic wounds: a narrative review. Cell Death Dis 2025; 16:341. [PMID: 40280905 PMCID: PMC12032273 DOI: 10.1038/s41419-025-07583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Metabolic aberrations are fundamental to the complex pathophysiology and challenges associated with diabetic wound healing. These alterations, induced by the diabetic environment, trigger a cascade of events that disrupt the normal wound-healing process. Key factors in this metabolic alternation include chronic hyperglycemia, insulin resistance, and dysregulated lipid and amino acid metabolism. In this review, we summarize the underlying mechanisms driving these metabolic changes in diabetic wounds, while emphasizing the broad implications of these disturbances. Additionally, we discuss therapeutic approaches that target these metabolic anomalies and how their integration with existing wound-healing treatments may yield synergistic effects, offering promising avenues for innovative therapies.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377, Munich, Germany
| | - Michael Alfertshofer
- Department of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, 80336, Munich, Germany
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Dongsheng Jiang
- Precision Research Centre for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377, Munich, Germany.
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Sepulveda H, Li X, Arteaga-Vazquez LJ, López-Moyado IF, Brunelli M, Hernández-Espinosa L, Yue X, Angel JC, Brown C, Dong Z, Jansz N, Puddu F, Modat A, Scotcher J, Creed P, Kennedy PH, Manriquez-Rodriguez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. Nat Struct Mol Biol 2025:10.1038/s41594-025-01505-9. [PMID: 40155743 DOI: 10.1038/s41594-025-01505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2025] [Indexed: 04/01/2025]
Abstract
O-GlcNAc transferase (OGT) interacts robustly with all three mammalian TET methylcytosine dioxygenases. Here we show that deletion of the Ogt gene in mouse embryonic stem (mES) cells results in a widespread increase in the TET product 5-hydroxymethylcytosine in both euchromatic and heterochromatic compartments, with a concomitant reduction in the TET substrate 5-methylcytosine at the same genomic regions. mES cells treated with an OGT inhibitor also displayed increased 5-hydroxymethylcytosine, and attenuating the TET1-OGT interaction in mES cells resulted in a genome-wide decrease of 5-methylcytosine, indicating that OGT restrains TET activity and limits inappropriate DNA demethylation in a manner that requires the TET-OGT interaction and the catalytic activity of OGT. DNA hypomethylation in OGT-deficient cells was accompanied by derepression of transposable elements predominantly located in heterochromatin. We suggest that OGT protects the genome against TET-mediated DNA demethylation and loss of heterochromatin integrity, preventing the aberrant increase in transposable element expression noted in cancer, autoimmune-inflammatory diseases, cellular senescence and aging.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Laboratory of Transcription and Epigenetics, Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiang Li
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Leo J Arteaga-Vazquez
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Isaac F López-Moyado
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Melina Brunelli
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Lot Hernández-Espinosa
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiaojing Yue
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - J Carlos Angel
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Caitlin Brown
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhen Dong
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Natasha Jansz
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Puddu
- biomodal, Chesterford Research Park, Cambridge, UK
| | | | | | - Páidí Creed
- biomodal, Chesterford Research Park, Cambridge, UK
| | - Patrick H Kennedy
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Cindy Manriquez-Rodriguez
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Myers
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia.
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Rucli S, Descostes N, Ermakova Y, Chitnavis U, Couturier J, Boskovic A, Boulard M. Functional genomic profiling of O-GlcNAc reveals its context-specific interplay with RNA polymerase II. Genome Biol 2025; 26:69. [PMID: 40128797 PMCID: PMC11931877 DOI: 10.1186/s13059-025-03537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND How reversible glycosylation of DNA-bound proteins acts on transcription remains scarcely understood. O-linked β-N-acetylglucosamine (O-GlcNAc) is the only known form of glycosylation modifying nuclear proteins, including RNA polymerase II (RNA Pol II) and many transcription factors. Yet, the regulatory function of the O-GlcNAc modification in mammalian chromatin remains unclear. RESULTS Here, we combine genome-wide profiling of O-GlcNAc-modified proteins with perturbations of intracellular glycosylation, RNA Pol II-degron, and super-resolution microscopy. Genomic profiling of O-GlcNAc-modified proteins shows a non-random distribution across the genome, with high densities in heterochromatin regions as well as on actively transcribed gene promoters. Large-scale intersection of the O-GlcNAc signal at promoters with public ChIP-seq datasets identifies a high overlap with RNA Pol II and specific cofactors. Knockdown of O-GlcNAc Transferase (Ogt) shows that most direct target genes are downregulated, supporting a global positive role of O-GlcNAc on the transcription of cellular genes. Rapid degradation of RNA Pol II results in the decrease of the O-GlcNAc levels at promoters encoding transcription factors and DNA modifying enzymes. RNA Pol II depletion also unexpectedly causes an increase of O-GlcNAc levels at a set of promoters encoding for the transcription machinery. CONCLUSIONS This study provides a deconvoluted genomic profiling of O-GlcNAc-modified proteins in murine and human cells. Perturbations of O-GlcNAc or RNA Pol II uncover a context-specific reciprocal functional interplay between the transcription machinery and the O-GlcNAc modification.
Collapse
Affiliation(s)
- Sofia Rucli
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
- Collaboration for a joint PhD degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Nicolas Descostes
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Yulia Ermakova
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Urvashi Chitnavis
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Jeanne Couturier
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Ana Boskovic
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy
| | - Matthieu Boulard
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Rome, Italy.
| |
Collapse
|
4
|
Du Y, Gao X, Chen J, Chen X, Liu H, He W, Liu L, Jiang Y, He B, Deng Z, Liang C, Guo F. OGT mediated HDAC5 O-GlcNAcylation promotes osteogenesis by regulating the homeostasis of epigenetic modifications and proteolysis. J Orthop Translat 2025; 50:14-29. [PMID: 39659899 PMCID: PMC11626777 DOI: 10.1016/j.jot.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024] Open
Abstract
Background O-GlcNAc transferase (OGT) is responsible for attaching O-linked N-acetylglucosamine (O-GlcNAc) to proteins, regulating diverse cellular processes ranging from transcription and translation to signaling and metabolism. This study focuses on the role and mechanisms of OGT in osteogenesis. Materials and methods We found that OGT is downregulated in osteoporosis by bioinformatics analysis, determined its role in osteogenic differentiation by using OGT inhibitors (or OGA inhibitors) as well as conditional knockout OGT mice in vitro and in vivo, and explored and specific mechanisms by quantitative proteomic analysis and RNA-seq, qRT-PCR, western blotting, immunofluorescence, H&E, ALP, ARS, Masson staining, IHC, micro CT, etc. Results we revealed that OGT positively influenced osteogenesis and osteoblast differentiation in vitro as well as ovariectomy (OVX) mice in vivo. Consistently, mice with conditionally depleted OGT exhibited a reduction in bone mass, while O-GlcNAcylation enhancer could partially recover bone mass in ovariectomy (OVX) mice. Mechanistically, quantitative proteomic analysis and high-throughput RNAseq further reveals that HDAC5 is one of the endogenous O-GlcNAcylation substrates, and O-GlcNAcylation of HDAC5 on Thr934 promotes its translocation to lysosomes and subsequent degradation, thus, elevating the O-GlcNAcylation level of HDAC5 leads to its cytoplasmic cleavage, consequently diminished its nuclear entry and enhanced DNA transcription. The OGT-mediated O-GlcNAcylation of HDAC5 modulates the balance between its cytoplasmic proteolysis and nuclear entry, thereby impacting the Notch signaling pathway and DNA epigenetic modifications then playing a role in osteogenesis. Conclusion OGT is a regulator that promotes osteoblast differentiation and bone regeneration. Additionally, it highlights the critical function of HDAC5 O-GlcNAcylation in controlling epigenetics. This study offers fresh perspectives on osteogenesis and O-GlcNAcylation, proposing that the OGT-mediated O-GlcNAcylation of HDAC5 could be a promising target for osteoporosis treatment. The translational potential of this article On one side, OGT might potentially be used as a new biomarker for clinical diagnosis of osteoporosis (OP) in the future. On the other side, small molecule inhibitors of HDAC5, a glycosylation substrate of OGT, or OGT agonists such as silymarin, could all potentially serve as therapeutic targets for the prevention or treatment of OP in the future.
Collapse
Affiliation(s)
- Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianqiang Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xinxin Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wenge He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Baicheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Fengjin Guo
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Martino S, Gargano S, Carollo PS, Di Leonardo A, Barra V. DNMT1 prolonged absence is a tunable cellular stress that triggers cell proliferation arrest to protect from major DNA methylation loss. Cell Mol Life Sci 2024; 82:7. [PMID: 39694934 DOI: 10.1007/s00018-024-05547-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Methylation of cytosine in CpG dinucleotides is an epigenetic modification carried out by DNA-methyltransferases (DNMTs) that contributes to chromatin condensation and structure and, thus, to gene transcription regulation and chromosome stability. DNMT1 maintains the DNA methylation pattern of the genome at each cell cycle by copying it to the newly synthesized DNA strand during the S-phase. DNMT1 pharmacological inhibition as well as genetic knockout and knockdown, leads to passive DNA methylation loss. However, these strategies have been associated with different cell fates, even in the same cell background, suggesting that they can question the interpretation of the obtained results. Using a cell system in which endogenous DNMT1 is fused with an inducible degron and can be rapidly degraded, we found that in non-tumoral RPE-1 cells, DNMT1 loss progressively induced cell proliferation slowing-down and cell cycle arrest at the G1/S transition. The latter is due to p21 activation, which is partly mediated by p53 and leads to a global reduction in DNA methylation. DNMT1 restoration rescues cell proliferation, indicating that its deregulation is sensed as tunable cellular stress.
Collapse
Affiliation(s)
- Salvatore Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Serena Gargano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Pietro Salvatore Carollo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
- Centro Di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128, Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| |
Collapse
|
6
|
Yung WS, Wang Q, Chan LY, Wang Z, Huang M, Li MW, Wong FL, Lam HM. DNA Hypomethylation Is One of the Epigenetic Mechanisms Involved in Salt-Stress Priming in Soybean Seedlings. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39601237 DOI: 10.1111/pce.15297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Salt-stress priming enhances the tolerance of plants against subsequent exposure to a similar stress. Priming-induced transcriptomic reprogramming is mediated by multiple epigenetic mechanisms, the best known of which is histone modifications. However, not much is known about other epigenetic responses. In this study, salt-stress priming resulted in global DNA hypomethylation in the leaves of soybean seedlings. The DNA methyltransferase activities in primed seedlings were reduced, contributing to the overall DNA hypomethylation. Genes associated with the hypomethylated DNA regions in primed seedlings also showed a higher mean level of the active histone mark, histone 3 lysine 4 trimethylation (H3K4me3), and a lower mean level of the repressive histone mark, H3K4me2. Transcriptomic analyses supported that DNA hypomethylation played a role in fine-tuning the chromatin status in primed seedlings to potentiate gene expressions. Motif and transcriptional network analyses revealed that DNA hypomethylation may facilitate the responses mediated by key transcription factors in the abscisic acid (ABA)-dependent pathway. A pre-treatment using a DNA methyltransferase inhibitor, 5-azacytidine, could enhance salt tolerance in non-primed soybean seedlings, similar to the priming effect, suggesting the role of DNA hypomethylation in salt-stress priming. Overall, this research furthers our understanding of the epigenetic mechanisms involved in salt-stress priming in soybean.
Collapse
Affiliation(s)
- Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qianwen Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Long-Yiu Chan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mingkun Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
7
|
Sun K, Zhi Y, Ren W, Li S, Zheng J, Gao L, Zhi K. Crosstalk between O-GlcNAcylation and ubiquitination: a novel strategy for overcoming cancer therapeutic resistance. Exp Hematol Oncol 2024; 13:107. [PMID: 39487556 PMCID: PMC11529444 DOI: 10.1186/s40164-024-00569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024] Open
Abstract
Developing resistance to cancer treatments is a major challenge, often leading to disease recurrence and metastasis. Understanding the underlying mechanisms of therapeutic resistance is critical for developing effective strategies. O-GlcNAcylation, a post-translational modification that adds GlcNAc from the donor UDP-GlcNAc to serine and threonine residues of proteins, plays a crucial role in regulating protein function and cellular signaling, which are frequently dysregulated in cancer. Similarly, ubiquitination, which involves the attachment of ubiquitin to to proteins, is crucial for protein degradation, cell cycle control, and DNA repair. The interplay between O-GlcNAcylation and ubiquitination is associated with cancer progression and resistance to treatment. This review discusses recent discoveries regarding the roles of O-GlcNAcylation and ubiquitination in cancer resistance, their interactions, and potential mechanisms. It also explores how targeting these pathways may provide new opportunities to overcome cancer treatment resistance in cancer, offering fresh insights and directions for research and therapeutic development.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Yuan Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
| | - Jingjing Zheng
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
| |
Collapse
|
8
|
Zhang D, Qi Y, Inuzuka H, Liu J, Wei W. O-GlcNAcylation in tumorigenesis and its implications for cancer therapy. J Biol Chem 2024; 300:107709. [PMID: 39178944 PMCID: PMC11417186 DOI: 10.1016/j.jbc.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a dynamic and reversible posttranslational modification that targets serine and threonine residues in a variety of proteins. Uridine diphospho-N-acetylglucosamine, which is synthesized from glucose via the hexosamine biosynthesis pathway, is the major donor of this modification. O-GlcNAc transferase is the sole enzyme that transfers GlcNAc onto protein substrates, while O-GlcNAcase is responsible for removing this modification. O-GlcNAcylation plays an important role in tumorigenesis and progression through the modification of specific protein substrates. In this review, we discuss the tumor-related biological functions of O-GlcNAcylation and summarize the recent progress in the development of pharmaceutical options to manipulate the O-GlcNAcylation of specific proteins as potential anticancer therapies.
Collapse
Affiliation(s)
- Dize Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States.
| |
Collapse
|
9
|
Zhuang S, Liu Z, Wu J, Yao Y, Li Z, Shen Y, Yu B, Wu D. Can O-GIcNAc Transferase (OGT) Complex Be Used as a Target for the Treatment of Hematological Malignancies? Pharmaceuticals (Basel) 2024; 17:664. [PMID: 38931332 PMCID: PMC11206344 DOI: 10.3390/ph17060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 06/28/2024] Open
Abstract
The circulatory system is a closed conduit system throughout the body and consists of two parts as follows: the cardiovascular system and the lymphatic system. Hematological malignancies usually grow and multiply in the circulatory system, directly or indirectly affecting its function. These malignancies include multiple myeloma, leukemia, and lymphoma. O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) regulates the function and stability of substrate proteins through O-GlcNAc modification. Abnormally expressed OGT is strongly associated with tumorigenesis, including hematological malignancies, colorectal cancer, liver cancer, breast cancer, and prostate cancer. In cells, OGT can assemble with a variety of proteins to form complexes to exercise related biological functions, such as OGT/HCF-1, OGT/TET, NSL, and then regulate glucose metabolism, gene transcription, cell proliferation, and other biological processes, thus affecting the development of hematological malignancies. This review summarizes the complexes involved in the assembly of OGT in cells and the role of related OGT complexes in hematological malignancies. Unraveling the complex network regulated by the OGT complex will facilitate a better understanding of hematologic malignancy development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donglu Wu
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (S.Z.); (Z.L.); (J.W.); (Y.Y.); (Z.L.); (Y.S.); (B.Y.)
| |
Collapse
|
10
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
11
|
Brenner LM, Meyer F, Yang H, Köhler AR, Bashtrykov P, Guo M, Jeltsch A, Lungu C, Olayioye MA. Repeat DNA methylation is modulated by adherens junction signaling. Commun Biol 2024; 7:286. [PMID: 38454140 PMCID: PMC10920906 DOI: 10.1038/s42003-024-05990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Through its involvement in gene transcription and heterochromatin formation, DNA methylation regulates how cells interact with their environment. Nevertheless, the extracellular signaling cues that modulate the distribution of this central chromatin modification are largely unclear. DNA methylation is highly abundant at repetitive elements, but its investigation in live cells has been complicated by methodological challenges. Utilizing a CRISPR/dCas9 biosensor that reads DNA methylation of human α-satellite repeats in live cells, we here uncover a signaling pathway linking the chromatin and transcriptional state of repetitive elements to epithelial adherens junction integrity. Specifically, we find that in confluent breast epithelial cell monolayers, α-satellite repeat methylation is reduced by comparison to low density cultures. This is coupled with increased transcriptional activity at repeats. Through comprehensive perturbation experiments, we identify the junctional protein E-cadherin, which links to the actin cytoskeleton, as a central molecular player for signal relay into the nucleus. Furthermore, we find that this pathway is impaired in cancer cells that lack E-cadherin and are not contact-inhibited. This suggests that the molecular connection between cell density and repetitive element methylation could play a role in the maintenance of epithelial tissue homeostasis.
Collapse
Affiliation(s)
- Lisa-Marie Brenner
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Florian Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Anja R Köhler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Cristiana Lungu
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany.
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany.
| |
Collapse
|
12
|
Sepulveda H, Li X, Yue X, Carlos Angel J, Arteaga-Vazquez LJ, Brown C, Brunelli M, Jansz N, Puddu F, Scotcher J, Creed P, Kennedy P, Manriquez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578097. [PMID: 38352366 PMCID: PMC10862820 DOI: 10.1101/2024.01.31.578097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The O- GlcNAc transferase OGT interacts robustly with all three mammalian TET methylcytosine dioxygenases. We show here that deletion of the Ogt gene in mouse embryonic stem cells (mESC) results in a widespread increase in the TET product 5-hydroxymethylcytosine (5hmC) in both euchromatic and heterochromatic compartments, with concomitant reduction of the TET substrate 5-methylcytosine (5mC) at the same genomic regions. mESC engineered to abolish the TET1-OGT interaction likewise displayed a genome-wide decrease of 5mC. DNA hypomethylation in OGT-deficient cells was accompanied by de-repression of transposable elements (TEs) predominantly located in heterochromatin, and this increase in TE expression was sometimes accompanied by increased cis -expression of genes and exons located 3' of the expressed TE. Thus, the TET-OGT interaction prevents DNA demethylation and TE expression in heterochromatin by restraining TET activity genome-wide. We suggest that OGT protects the genome against DNA hypomethylation and impaired heterochromatin integrity, preventing the aberrant increase in TE expression observed in cancer, autoimmune-inflammatory diseases, cellular senescence and ageing.
Collapse
|
13
|
Dupas T, Lauzier B, McGraw S. O-GlcNAcylation: the sweet side of epigenetics. Epigenetics Chromatin 2023; 16:49. [PMID: 38093337 PMCID: PMC10720106 DOI: 10.1186/s13072-023-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Histones display a wide variety of post-translational modifications, including acetylation, methylation, and phosphorylation. These epigenetic modifications can influence chromatin structure and function without altering the DNA sequence. Histones can also undergo post-translational O-GlcNAcylation, a rather understudied modification that plays critical roles in almost all biological processes and is added and removed by O-linked N-acetylglucosamine transferase and O-GlcNAcase, respectively. This review provides a current overview of our knowledge of how O-GlcNAcylation impacts the histone code both directly and by regulating other chromatin modifying enzymes. This highlights the pivotal emerging role of O-GlcNAcylation as an essential epigenetic marker.
Collapse
Affiliation(s)
- Thomas Dupas
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| | - Benjamin Lauzier
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada
- Nantes Université, CNRS, INSERM, L'institut du Thorax, 44000, Nantes, France
| | - Serge McGraw
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
14
|
Shin H, Leung A, Costello KR, Senapati P, Kato H, Moore RE, Lee M, Lin D, Tang X, Pirrotte P, Bouman Chen Z, Schones DE. Inhibition of DNMT1 methyltransferase activity via glucose-regulated O-GlcNAcylation alters the epigenome. eLife 2023; 12:e85595. [PMID: 37470704 PMCID: PMC10390045 DOI: 10.7554/elife.85595] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/19/2023] [Indexed: 07/21/2023] Open
Abstract
The DNA methyltransferase activity of DNMT1 is vital for genomic maintenance of DNA methylation. We report here that DNMT1 function is regulated by O-GlcNAcylation, a protein modification that is sensitive to glucose levels, and that elevated O-GlcNAcylation of DNMT1 from high glucose environment leads to alterations to the epigenome. Using mass spectrometry and complementary alanine mutation experiments, we identified S878 as the major residue that is O-GlcNAcylated on human DNMT1. Functional studies in human and mouse cells further revealed that O-GlcNAcylation of DNMT1-S878 results in an inhibition of methyltransferase activity, resulting in a general loss of DNA methylation that preferentially occurs at partially methylated domains (PMDs). This loss of methylation corresponds with an increase in DNA damage and apoptosis. These results establish O-GlcNAcylation of DNMT1 as a mechanism through which the epigenome is regulated by glucose metabolism and implicates a role for glycosylation of DNMT1 in metabolic diseases characterized by hyperglycemia.
Collapse
Affiliation(s)
- Heon Shin
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of HopeDuarteUnited States
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of HopeDuarteUnited States
| | - Kevin R Costello
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of HopeDuarteUnited States
- Irell and Manella Graduate School of Biological Sciences, City of HopeDuarteUnited States
| | - Parijat Senapati
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of HopeDuarteUnited States
| | - Hiroyuki Kato
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of HopeDuarteUnited States
| | - Roger E Moore
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center DuarteDuarteUnited States
| | - Michael Lee
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of HopeDuarteUnited States
- Irell and Manella Graduate School of Biological Sciences, City of HopeDuarteUnited States
| | - Dimitri Lin
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of HopeDuarteUnited States
| | - Xiaofang Tang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of HopeDuarteUnited States
| | - Patrick Pirrotte
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of HopeDuarteUnited States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center DuarteDuarteUnited States
- Cancer & Cell Biology Division, Translational Genomics Research InstitutePhoenixUnited States
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of HopeDuarteUnited States
- Irell and Manella Graduate School of Biological Sciences, City of HopeDuarteUnited States
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of HopeDuarteUnited States
- Irell and Manella Graduate School of Biological Sciences, City of HopeDuarteUnited States
| |
Collapse
|