1
|
Ouyang L, Gao X, Yang R, Zhou P, Cai H, Tian Y, Wang H, Kong S, Lu Z. SHP2 regulates the HIF-1 signaling pathway in the decidual human endometrial stromal cells†. Biol Reprod 2025; 112:743-753. [PMID: 39893623 DOI: 10.1093/biolre/ioaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/02/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025] Open
Abstract
The decidual endometrial stromal cells play a critical role in the establishment of uterine receptivity and pregnancy in human. Our previous studies demonstrate that protein tyrosine phosphatase 2 SHP2 is highly expressed in decidualized cells and governs the decidualization progress. However, the role and mechanism of SHP2 in the function of decidual cells remain unclear. Here, we screened proteins interacting with SHP2 in decidual hTERT-immortalized human endometrial stromal cells (T-HESCs) and identified Hypoxia-inducible factor-1 (HIF-1) signaling pathway as a potential SHP2-mediated signaling pathway through proximity-dependent biotinylation (BioID) analysis. Immunoprecipitation (Co-IP) revealed an interaction between SHP2 and HIF-1α, which colocalized to the nucleus in decidual cells. Furthermore, the SHP2 expression correlated with the transcriptional activation of HIF-1α and its downstream genes Beta-enolase (Eno3), Pyruvate kinase 2 (Pkm2), Aldolase C (Aldoc), and Facilitative glucose transporter 1 (Glut1). Knockdown or inhibition of SHP2 significantly reduced the mRNA and protein levels of HIF-1α and its downstream genes, as well as lactate production in decidual cells. We also established a hypoxia model of T-HESCs and 293 T cells and found that hypoxic treatment induced the expression of SHP2 and HIF-1α, which colocalized in the nucleus. SHP2 forced-expression rescued the inhibitory effects of SHP2 deficiency on HIF-1α expression and lactate production. Finally, SHP2 binds to the promoter regions of HIF-1α and its target genes (Eno3, Pkm2, Aldoc, and Glut1). Collectively, our results suggest that SHP2 influences the function of decidual cells by HIF-1α signaling and provide a novel function mechanism of decidual stromal cells.
Collapse
Affiliation(s)
- Liqun Ouyang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Xia Gao
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Rongyu Yang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Peiyi Zhou
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Han Cai
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Yingpu Tian
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Zhongxian Lu
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
Siargkas A, Tsakiridis I, Michos G, Liberis A, Stavros S, Kyriakakis M, Domali E, Mamopoulos A, Dagklis T. Impact of Placental Grading on Pregnancy Outcomes: A Retrospective Cohort Study. Healthcare (Basel) 2025; 13:601. [PMID: 40150451 PMCID: PMC11942256 DOI: 10.3390/healthcare13060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Placental grading remains underutilized in clinical practice despite its potential prognostic value. This study aimed to elucidate the relationship between premature placental calcification (PPC) and relevant perinatal outcomes in a large cohort. METHODS We conducted a retrospective cohort study involving 3088 singleton pregnancies that underwent routine third-trimester ultrasound examinations (30+0 to 35+6 gestational weeks) at the Third Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece, between January 2018 and December 2023. Placental calcification was graded using the Grannum system, categorizing placentas into Grades 0-1 (control), Grade 2, and Grade 3. Primary outcomes assessed were small for gestational age neonates (SGA) and preeclampsia. Secondary outcomes included gestational hypertension, fetal growth restriction (FGR), stillbirth, gestational age at birth, and birthweight centile. Multiple logistic regression was employed to adjust for confounders, i.e., maternal age, BMI, smoking, conception via assisted reproductive technology, and uterine artery pulsatility index. RESULTS In total, 544 pregnancies (17.6%) had Grade 2 placentas, and 41 pregnancies (1.3%) had Grade 3 placentas. Compared to the control group, Grade 2 placentas were associated with increased odds of SGA (adjusted odds ratio [aOR] 1.80; 95% confidence intervals [CI]: 1.43-2.25) and FGR (aOR 1.81; 95% CI: 1.35-2.42). Grade 3 placentas showed even higher odds of SGA (aOR 3.09; 95% CI: 1.55-6.17) and FGR (aOR 3.26; 95% CI: 1.53-6.95). No significant associations were found between placental grading and preeclampsia or stillbirth. Additionally, PPC was linked to lower birthweight percentiles and earlier gestational age at birth. CONCLUSIONS Premature placental calcification (before 36+0 weeks), particularly Grade 3, is significantly associated with adverse perinatal outcomes such as SGA and FGR. Incorporating placental grading into routine prenatal care may enhance risk stratification and guide clinical decision making beyond traditional assessment methods.
Collapse
Affiliation(s)
- Antonios Siargkas
- Third Department of Obstetrics and Gynecology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (T.D.)
| | - Ioannis Tsakiridis
- Third Department of Obstetrics and Gynecology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (T.D.)
| | - Georgios Michos
- Third Department of Obstetrics and Gynecology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (T.D.)
| | - Anastasios Liberis
- Third Department of Obstetrics and Gynecology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (T.D.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University Hospital “ATTIKON”, Medical School of the National, Kapodistrian University of Athens, 11527 Athens, Greece
| | - Menelaos Kyriakakis
- Third Department of Obstetrics and Gynecology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (T.D.)
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Apostolos Mamopoulos
- Third Department of Obstetrics and Gynecology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (T.D.)
| | - Themistoklis Dagklis
- Third Department of Obstetrics and Gynecology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (T.D.)
| |
Collapse
|
3
|
Nie T, Nepovimova E, Wu Q. Circadian rhythm, hypoxia, and cellular senescence: From molecular mechanisms to targeted strategies. Eur J Pharmacol 2025; 990:177290. [PMID: 39863143 DOI: 10.1016/j.ejphar.2025.177290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence. Circadian proteins are central to the molecular mechanism governing circadian rhythm, which regulates homeostasis throughout the body. These proteins mediate responses to hypoxic stress and influence the progression of cellular senescence, with protein Brain and muscle arnt-like 1 (BMAL1 or Arntl) playing a prominent role. Hypoxia-inducible factor-1α (HIF-1α), a key regulator of oxygen homeostasis within the cellular microenvironment, orchestrates the transcription of genes involved in various physiological processes. HIF-1α not only impacts normal circadian rhythm functions but also can induce or inhibit cellular senescence. Notably, HIF-1α may aberrantly interact with BMAL1, forming the HIF-1α-BMAL1 heterodimer, which can instigate multiple physiological dysfunctions. This heterodimer is hypothesized to modulate cellular senescence by affecting the molecular mechanism of circadian rhythm and hypoxia signaling pathways. In this review, we elucidate the intricate relationships among circadian rhythm, hypoxia, and cellular senescence. We synthesize diverse evidence to discuss their underlying mechanisms and identify novel therapeutic targets to address cellular senescence. Additionally, we discuss current challenges and suggest potential directions for future research. This work aims to deepen our understanding of the interplay between circadian rhythm, hypoxia, and cellular senescence, ultimately facilitating the development of therapeutic strategies for aging and related diseases.
Collapse
Affiliation(s)
- Tong Nie
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
4
|
Lapehn S, Nair S, Firsick EJ, MacDonald J, Thoreson C, Litch JA, Bush NR, Kadam L, Girard S, Myatt L, Prasad B, Sathyanarayana S, Paquette AG. A transcriptomic comparison of in vitro models of the human placenta. Placenta 2025; 159:52-61. [PMID: 39637677 PMCID: PMC11857522 DOI: 10.1016/j.placenta.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Selecting an in vitro culture model of the human placenta is challenging due to representation of different trophoblast cell types with distinct biological roles and limited comparative studies that define key characteristics of these models. The aim of this research was to compare the transcriptomes of common in vitro models of the human placenta compared to bulk human placental tissue. METHODS We performed differential gene expression analysis on publicly available transcriptomic data from 7 in vitro models of the human placenta (HTR-8/SVneo, BeWo, JEG-3, JAR, Primary Trophoblasts, Villous Explants, and Trophoblast Stem Cells) and compared to bulk placental tissue from 2 cohort studies (CANDLE and GAPPS) or individual trophoblast cell types derived from bulk placental tissue. RESULTS All in vitro placental models had a substantial number of differentially expressed genes (DEGs, FDR<0.01) compared to the CANDLE and GAPPS placentas (Average DEGs = 10,624), and the individual trophoblast cell types (Average DEGs = 5413), indicating that there are vast differences in gene expression. Hierarchical clustering identified 54 gene clusters with distinct expression profiles across placental models, with 23 clusters enriched for specific KEGG pathways. Placental cell lines were classified by fetal sex based on expression of Y-chromosome genes that identified HTR-8/SVneo cells as female origin, while JEG-3, JAR, and BeWo cells are of male origin. DISCUSSION None of the models were a close approximation of the human bulk placental transcriptome, highlighting the challenges with model selection. To enable appropriate model selection, we adapted our data into a web application: "Comparative Transcriptomic Placental Model Atlas (CTPMA)".
Collapse
Affiliation(s)
- Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
| | - Sidharth Nair
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Evan J Firsick
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, 98195, USA
| | - Ciara Thoreson
- Global Alliance to Prevent Prematurity and Stillbirth, Lynwood, WA, 98036, USA
| | - James A Litch
- Global Alliance to Prevent Prematurity and Stillbirth, Lynwood, WA, 98036, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA; Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, 98101, USA
| | - Alison G Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, 98195, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
5
|
Zhu Z, Li L, Ye Y, Zhong Q. Integrating bulk and single-cell transcriptomics to elucidate the role and potential mechanisms of autophagy in aging tissue. Cell Oncol (Dordr) 2024; 47:2183-2199. [PMID: 39414741 DOI: 10.1007/s13402-024-00996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
PURPOSE Autophagy is frequently observed in tissues during the aging process, yet the tissues most strongly correlated with autophagy during aging and the underlying regulatory mechanisms remain inadequately understood. The purpose of this study is to identify the tissues with the highest correlation between autophagy and aging, and to explore the functions and mechanisms of autophagy in the aging tissue microenvironment. METHODS Integrated bulk RNA-seq from over 7000 normal tissue samples, single-cell sequencing data from blood samples of different ages, more than 2000 acute myeloid leukemia (AML) bulk RNA-seq, and multiple sets of AML single-cell data. The datasets were analysed using various bioinformatic approaches. RESULTS Blood tissue exhibited the highest positive correlation between autophagy and aging among healthy tissues. Single-cell resolution analysis revealed that in aged blood, classical monocytes (C. monocytes) are most closely associated with elevated autophagy levels. Increased autophagy in these monocytes correlated with a higher proportion of C. monocytes, with hypoxia identified as a crucial contributing factor. In AML, a representative myeloid blood disease, enhanced autophagy was accompanied by an increased proportionof C. monocytes. High autophagy levels in monocytes are associated with pro-inflammatory gene upregulation and Reactive Oxygen Species (ROS) accumulation, contributing to tissue aging. CONCLUSION This study revealed that autophagy is most strongly correlated with aging in blood tissue. Enhanced autophagy levels in C. monocytes demonstrate a positive correlation with increased secretion of pro-inflammatory factors and elevated production of ROS, which may contribute to a more rapid aging process. This discovery underscores the critical role of autophagy in blood aging and suggests potential therapeutic targets to mitigate aging-related health issues.
Collapse
Affiliation(s)
- Zhenhua Zhu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Deng Y, Gao H, Wu Q. T-2 Toxin Induces Immunosenescence in RAW264.7 Macrophages by Activating the HIF-1α/cGAS-STING Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24046-24057. [PMID: 39420480 DOI: 10.1021/acs.jafc.4c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
T-2 toxin induces cell immunotoxicity by triggering an intracellular hypoxic microenvironment and activates hypoxia-inducible factor-1α (HIF-1α), which exerts cellular protective effects. Mycotoxins can also induce senescence. The aging of immune function, termed "immunosenescence," is an important factor in the decline of biological immunity and accelerates senescence. However, the mechanism underlying T-2 toxin-induced immunosenescence remains unclear. This study aimed to elucidate the roles of HIF-1α and cGAS-STING signaling in this process and uncover the mechanisms through which T-2 toxin impacts cytoskeletal integrity and cellular senescence using a RAW264.7 macrophage model. The cells were treated with T-2 toxin (14 nM) for 1-24 h. We revealed that T-2 toxin-induced immunosenescence in RAW264.7 cells by activating the HIF-1α/cGAS-STING axis. The cGAS-STING pathway promotes cell senescence and apoptosis; however, we revealed that HIF-1α negatively regulated this pathway, thereby inhibiting cellular senescence and apoptosis. However, PARP 1 cleavage by caspase 3/9 inhibited DNA repair and accelerated the transition from senescence to apoptosis. At the late stages of T-2 toxin exposure (12 h), HIF-1α accelerated cellular senescence by disrupting the dynamic balance of cytoskeletal α-tubulin and F-actin and destabilizing the cytoskeletal structure. Our research demonstrates that T-2 toxin induces immunosenescence in RAW264.7 cells by activating the cGAS-STING pathway, with HIF-1α signaling serving as a negative regulator. This study provides a deeper understanding of T-2 toxin-induced immunosenescence.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
7
|
Yu ZZ, Tu JJ, Ou ML, Cen JX, Xue K, Li SJ, Zhou J, Lu GD. A mechanistic analysis of metformin's biphasic effects on lifespan and healthspan in C. elegans: Elixir in youth, poison in elder. Mech Ageing Dev 2024; 221:111963. [PMID: 38986790 DOI: 10.1016/j.mad.2024.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Aging, a complex biological process influenced by genetic, environmental, and pharmacological factors, presents a significant challenge in understanding its underlying mechanisms. In this study, we explored the divergent impacts of metformin treatment on the lifespan and healthspan of young and old C. elegans, demonstrating a intriguing "elixir in youth, poison in elder" phenomenon. By scrutinizing the gene expression changes in response to metformin in young (day 1 of adulthood) and old (days 8) groups, we identified nhr-57 and C46G7.1 as potential modulators of age-specific responses. Notably, nhr-57 and C46G7.1 exhibit contrasting regulation patterns, being up-regulated in young worms but down-regulated in old counterparts following metformin treatment. Functional studies employing knockdown approaches targeting nhr-57, a gene under the control of hif-1 with a documented protective function against pore-forming toxins in C. elegans, and C46G7.1, unveiled their critical roles in modulating lifespan and healthspan, as well as in mediating the biphasic effects of metformin. Furthermore, deletion of hif-1 retarded the influence of metformin, implicating the involvement of hif-1/nhr-57 in age-specific drug responses. These findings underscored the necessity of deciphering the mechanisms governing age-related susceptibility to pharmacological agents to tailor interventions for promoting successful aging.
Collapse
Affiliation(s)
- Zhen-Zhen Yu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Jia-Jun Tu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Mei-Ling Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Jin-Xiong Cen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Kun Xue
- School of Public Health, Fudan University, Shanghai 200032, PR China.
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, PR China.
| | - Jing Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| | - Guo-Dong Lu
- School of Public Health, Fudan University, Shanghai 200032, PR China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province 530021, PR China.
| |
Collapse
|
8
|
Dai Y, Xu X, Huo X, Schuitemaker JHN, Faas MM. Differential effect of lead and cadmium on mitochondrial function and NLRP3 inflammasome activation in human trophoblast. J Physiol 2024. [PMID: 39197088 DOI: 10.1113/jp286755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 08/30/2024] Open
Abstract
Heavy metals disrupt mitochondrial function and activate the NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome. We investigated the effect of lead (Pb)/cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast under normoxic, hypoxic and pro-inflammatory conditions. JEG-3, BeWo and HTR-8/SVneo cells were exposed to Pb or Cd for 24 h in the absence or presence of hypoxia or pro-inflammatory lipopolysaccharide (LPS) or poly(I:C). Then, we evaluated cell viability, apoptosis, mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨ), NLRP3 inflammasome proteins and interleukin (IL)-1β secretion. Although our data showed that Pb, Cd, hypoxia, poly(I:C) and LPS decreased mtDNAcn in the three cell lines, the effects of these treatments on other biomarkers were different in the different cell lines. We found that hypoxia decreased ΔΨ and promoted apoptosis in JEG-3 cells, increased ΔΨ and prevented apoptosis in BeWo cells, and did not change ΔΨ and apoptosis in HTR-8/SVneo cells. Moreover, Pb under hypoxic conditions reduced ΔΨ and promoted apoptosis of BeWo cells. Exposure of BeWo and HTR-8/SVneo cells to hypoxia, Pb or Cd alone upregulated the expression of NLRP3 and pro-caspase 1 but did not activate the NLRP3 inflammasome since cleaved-caspase 1 and IL-1β were not increased. To conclude, Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines, but in a cell line-specific way. KEY POINTS: The objective of this work was an understanding of the effect of lead (Pb) and cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast cell lines under normoxic, hypoxic and pro-inflammatory conditions. Apoptosis of JEG-3 cells was increased by hypoxia, while in BeWo cells, apoptosis was decreased by hypoxia, and in HTR-8/SVneo, apoptosis was not affected by hypoxic treatment. Exposure to either Pb or Cd decreased mtDNAcn in three human placental trophoblast cell lines. However, Pb under hypoxia induced a decrease of ΔΨ and promoted apoptosis of BeWo cells, but Cd did not induce a reduction in ΔΨ in the three trophoblast cell lines under any conditions. Exposure to hypoxia, Pb or Cd increased NLRP3 and pro-caspase 1 in BeWo and HTR-8/SVneo cells. Our findings highlight that Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines but in a cell line-specific way.
Collapse
Affiliation(s)
- Yifeng Dai
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Joost H N Schuitemaker
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Research & Development, IQProducts, Groningen, The Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Lv W, Xie H, Wu S, Dong J, Jia Y, Ying H. Identification of key metabolism-related genes and pathways in spontaneous preterm birth: combining bioinformatic analysis and machine learning. Front Endocrinol (Lausanne) 2024; 15:1440436. [PMID: 39229380 PMCID: PMC11368757 DOI: 10.3389/fendo.2024.1440436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Spontaneous preterm birth (sPTB) is a global disease that is a leading cause of death in neonates and children younger than 5 years of age. However, the etiology of sPTB remains poorly understood. Recent evidence has shown a strong association between metabolic disorders and sPTB. To determine the metabolic alterations in sPTB patients, we used various bioinformatics methods to analyze the abnormal changes in metabolic pathways in the preterm placenta via existing datasets. Methods In this study, we integrated two datasets (GSE203507 and GSE174415) from the NCBI GEO database for the following analysis. We utilized the "Deseq2" R package and WGCNA for differentially expressed genes (DEGs) analysis; the identified DEGs were subsequently compared with metabolism-related genes. To identify the altered metabolism-related pathways and hub genes in sPTB patients, we performed multiple functional enrichment analysis and applied three machine learning algorithms, LASSO, SVM-RFE, and RF, with the hub genes that were verified by immunohistochemistry. Additionally, we conducted single-sample gene set enrichment analysis to assess immune infiltration in the placenta. Results We identified 228 sPTB-related DEGs that were enriched in pathways such as arachidonic acid and glutathione metabolism. A total of 3 metabolism-related hub genes, namely, ANPEP, CKMT1B, and PLA2G4A, were identified and validated in external datasets and experiments. A nomogram model was developed and evaluated with 3 hub genes; the model could reliably distinguish sPTB patients and term labor patients with an area under the curve (AUC) > 0.75 for both the training and validation sets. Immune infiltration analysis revealed immune dysregulation in sPTB patients. Conclusion Three potential hub genes that influence the occurrence of sPTB through shadow participation in placental metabolism were identified; these results provide a new perspective for the development and targeting of treatments for sPTB.
Collapse
Affiliation(s)
- Wenqi Lv
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Han Xie
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Shengyu Wu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Jiaqi Dong
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Yuanhui Jia
- Department of Clinical Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, sChina
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
- Department of Clinical Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, sChina
| |
Collapse
|
10
|
Hung SC, Chan TF, Chan HC, Wu CY, Chan ML, Jhuang JY, Tan JQ, Mei JB, Law SH, Ponnusamy VK, Chan HC, Ke LY. Lysophosphatidylcholine Impairs the Mitochondria Homeostasis Leading to Trophoblast Dysfunction in Gestational Diabetes Mellitus. Antioxidants (Basel) 2024; 13:1007. [PMID: 39199251 PMCID: PMC11351454 DOI: 10.3390/antiox13081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy disorder associated with an increased risk of pre-eclampsia and macrosomia. Recent research has shown that the buildup of excess lipids within the placental trophoblast impairs mitochondrial function. However, the exact lipids that impact the placental trophoblast and the underlying mechanism remain unclear. GDM cases and healthy controls were recruited at Kaohsiung Medical University Hospital. The placenta and cord blood were taken during birth. Confocal and electron microscopy were utilized to examine the morphology of the placenta and mitochondria. We determined the lipid composition using liquid chromatography-mass spectrometry in data-independent analysis mode (LC/MSE). In vitro studies were carried out on choriocarcinoma cells (JEG3) to investigate the mechanism of trophoblast mitochondrial dysfunction. Results showed that the GDM placenta was distinguished by increased syncytial knots, chorangiosis, lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) overexpression, and mitochondrial dysfunction. Lysophosphatidylcholine (LPC) 16:0 was significantly elevated in the cord blood LDL of GDM patients. In vitro, we demonstrated that LPC dose-dependently disrupts mitochondrial function by increasing reactive oxygen species (ROS) levels and HIF-1α signaling. In conclusion, highly elevated LPC in cord blood plays a pivotal role in GDM, contributing to trophoblast impairment and pregnancy complications.
Collapse
Affiliation(s)
- Shao-Chi Hung
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Te-Fu Chan
- Graduate Institute of Medicine, College of Medicine & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Hsiu-Chuan Chan
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (H.-C.C.); (V.K.P.)
| | - Chia-Ying Wu
- The Master Program of AI Application in Health Industry, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Mei-Lin Chan
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, MacKay Medical College, Taipei 104217, Taiwan;
- Department of Medicine, MacKay Medical College, New Taipei 252005, Taiwan;
| | - Jie-Yang Jhuang
- Department of Medicine, MacKay Medical College, New Taipei 252005, Taiwan;
- Department of Pathology, Mackay Memorial Hospital, Tamsui Branch, New Taipei 251404, Taiwan
| | - Ji-Qin Tan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Jia-Bin Mei
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Vinoth Kumar Ponnusamy
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (H.-C.C.); (V.K.P.)
- Department of Medicinal and Applied Chemistry & Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hua-Chen Chan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
- Graduate Institute of Medicine, College of Medicine & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| |
Collapse
|
11
|
Lapehn S, Nair S, Firsick EJ, MacDonald J, Thoreson C, Litch JA, Bush NR, Kadam L, Girard S, Myatt L, Prasad B, Sathyanarayana S, Paquette AG. Transcriptomic comparison of in vitro models of the human placenta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598695. [PMID: 38915703 PMCID: PMC11195179 DOI: 10.1101/2024.06.14.598695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Studying the human placenta through in vitro cell culture methods is necessary due to limited access and amenability of human placental tissue to certain experimental methods as well as distinct anatomical and physiological differences between animal and human placentas. Selecting an in vitro culture model of the human placenta is challenging due to representation of different trophoblast cell types with distinct biological roles and limited comparative studies that define key characteristics of these models. Therefore, the aim of this research was to create a comprehensive transcriptomic comparison of common in vitro models of the human placenta compared to bulk placental tissue from the CANDLE and GAPPS cohorts (N=1083). We performed differential gene expression analysis on publicly available RNA sequencing data from 6 common in vitro models of the human placenta (HTR-8/SVneo, BeWo, JEG-3, JAR, Primary Trophoblasts, and Villous Explants) and compared to CANDLE and GAPPS bulk placental tissue or cytotrophoblast, syncytiotrophoblast, and extravillous trophoblast cell types derived from bulk placental tissue. All in vitro placental models had a substantial number of differentially expressed genes (DEGs, FDR<0.01) compared to the CANDLE and GAPPS placentas (Average DEGs=10,873), and the individual trophoblast cell types (Average DEGs=5,346), indicating that there are vast differences in gene expression compared to bulk and cell-type specific human placental tissue. Hierarchical clustering identified 53 gene clusters with distinct expression profiles across placental models, with 22 clusters enriched for specific KEGG pathways, 7 clusters enriched for high-expression placental genes, and 7 clusters enriched for absorption, distribution, metabolism, and excretion genes. In vitro placental models were classified by fetal sex based on expression of Y-chromosome genes that identified HTR-8/SVneo cells as being of female origin, while JEG-3, JAR, and BeWo cells are of male origin. Overall, none of the models were a close approximation of the transcriptome of bulk human placental tissue, highlighting the challenges with model selection. To enable researchers to select appropriate models, we have compiled data on differential gene expression, clustering, and fetal sex into an accessible web application: "Comparative Transcriptomic Placental Model Atlas (CTPMA)" which can be utilized by researchers to make informed decisions about their selection of in vitro placental models.
Collapse
Affiliation(s)
- Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children!s Research Institute, Seattle, WA 98101 United States
| | - Sidharth Nair
- Center for Developmental Biology and Regenerative Medicine, Seattle Children!s Research Institute, Seattle, WA 98101 United States
| | - Evan J. Firsick
- Center for Developmental Biology and Regenerative Medicine, Seattle Children!s Research Institute, Seattle, WA 98101 United States
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA 98195 United States
| | - Ciara Thoreson
- Global Alliance to Prevent Prematurity and Stillbirth, Lynwood, WA 98036 United States
| | - James A Litch
- Global Alliance to Prevent Prematurity and Stillbirth, Lynwood, WA 98036 United States
| | - Nicole R. Bush
- Department of Psychiatry and Behavioral Sciences; Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143 United States
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97239 United States
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55905 United States
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97239 United States
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202 United States
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 United States
- Center for Child Health, Behavior and Development, Seattle Children!s Research Institute, Seattle, WA 98101 United States
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA 98101 United States
| | - Alison G. Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children!s Research Institute, Seattle, WA 98101 United States
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA 98195 United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 United States
| |
Collapse
|
12
|
Roh JD, Castro C, Yu AZ, Rana S, Shahul S, Gray KJ, Honigberg MC, Ricke-Hoch M, Iwamoto Y, Yeri AS, Kitchen R, Guerra JB, Hobson R, Chaudhari V, Chang B, Sarma A, Lerchenmüller C, Al Sayed ZR, Verdugo CD, Xia P, Skarbianskis N, Zeisel A, Bauersachs J, Kirkland JL, Karumanchi SA, Gorcsan J, Sugahara M, Damp J, Hanley-Yanez K, Ellinor PT, Arany Z, McNamara DM, Hilfiker-Kleiner D, Rosenzweig A. Placental senescence pathophysiology is shared between peripartum cardiomyopathy and preeclampsia in mouse and human. Sci Transl Med 2024; 16:eadi0077. [PMID: 38630848 PMCID: PMC11331492 DOI: 10.1126/scitranslmed.adi0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Peripartum cardiomyopathy (PPCM) is an idiopathic form of pregnancy-induced heart failure associated with preeclampsia. Circulating factors in late pregnancy are thought to contribute to both diseases, suggesting a common underlying pathophysiological process. However, what drives this process remains unclear. Using serum proteomics, we identified the senescence-associated secretory phenotype (SASP), a marker of cellular senescence associated with biological aging, as the most highly up-regulated pathway in young women with PPCM or preeclampsia. Placentas from women with preeclampsia displayed multiple markers of amplified senescence and tissue aging, as well as overall increased gene expression of 28 circulating proteins that contributed to SASP pathway enrichment in serum samples from patients with preeclampsia or PPCM. The most highly expressed placental SASP factor, activin A, was associated with cardiac dysfunction or heart failure severity in women with preeclampsia or PPCM. In a murine model of PPCM induced by cardiomyocyte-specific deletion of the gene encoding peroxisome proliferator-activated receptor γ coactivator-1α, inhibiting activin A signaling in the early postpartum period with a monoclonal antibody to the activin type II receptor improved heart function. In addition, attenuating placental senescence with the senolytic compound fisetin in late pregnancy improved cardiac function in these animals. These findings link senescence biology to cardiac dysfunction in pregnancy and help to elucidate the pathogenesis underlying cardiovascular diseases of pregnancy.
Collapse
Affiliation(s)
- Jason D. Roh
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Claire Castro
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andy Z. Yu
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sarosh Rana
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago School of Medicine, Chicago, IL 60637, USA
| | - Sajid Shahul
- Department of Anesthesia and Critical Care, University of Chicago School of Medicine, Chicago, IL 60637, USA
| | - Kathryn J. Gray
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Michael C. Honigberg
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover 30625, Germany
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ashish S. Yeri
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert Kitchen
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Justin Baldovino Guerra
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Stanley and Judith Frankel Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ryan Hobson
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vinita Chaudhari
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bliss Chang
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Amy Sarma
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Carolin Lerchenmüller
- Department of Cardiology, Angiology, and Pneumology, University of Heidelberg, Heidelberg 69120, Germany
- German Center for Heart and Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Heidelberg 69120, Germany
| | - Zeina R. Al Sayed
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carmen Diaz Verdugo
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peng Xia
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Niv Skarbianskis
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Amit Zeisel
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover 30625, Germany
| | - James L. Kirkland
- Departments of Medicine and Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - John Gorcsan
- Penn State College of Medicine, Hershey, PA 17033, USA
| | - Masataka Sugahara
- Department of Cardiovascular and Renal Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Julie Damp
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Karen Hanley-Yanez
- Heart and Vascular Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick T. Ellinor
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis M. McNamara
- Heart and Vascular Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Hannover 30625, Germany
- Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Philipps University Marburg, Marburg 35037, Germany
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Stanley and Judith Frankel Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| |
Collapse
|