1
|
Batra S, Vaquer-Alicea J, Valdez C, Taylor SP, Manon VA, Vega AR, Kashmer OM, Kolay S, Lemoff A, Cairns NJ, White CL, Diamond MI. VCP regulates early tau seed amplification via specific cofactors. Mol Neurodegener 2025; 20:2. [PMID: 39773263 PMCID: PMC11707990 DOI: 10.1186/s13024-024-00783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. Seeding into the complex cytoplasmic milieu happens within hours, implying the existence of unknown factors that regulate this process. METHODS We used proximity labeling to identify proteins that control seed amplification within 5 h of seed exposure. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity 5 h after seeded intracellular tau aggregation. Valosin containing protein (VCP/p97) was the top hit. VCP harbors dominant mutations that underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We used immortalized cells and human neurons to study the effects of VCP on tau seeding. We exposed cells to fibrils or brain homogenates in cell culture media and measured effects on uptake and induction of intracellular tau aggregation following various genetic and pharmacological manipulations of VCP. RESULTS VCP knockdown reduced tau seeding. Chemical inhibitors had opposing effects on seeding in HEK293T tau biosensor cells and human neurons: ML-240 increased seeding efficiency, whereas NMS-873 decreased it. The inhibitors only functioned when administered within 8 h of seed exposure, indicating a role for VCP early in seed processing. We screened 30 VCP co-factors in HEK293T biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. By contrast, reduction of FAF2 increased tau seeding. CONCLUSIONS Divergent effects on tau seeding of chemical inhibitors and cofactor reduction indicate that VCP regulates this process. This is consistent with a cytoplasmic processing complex centered on VCP that directs seeds acutely towards degradation vs. amplification.
Collapse
Affiliation(s)
- Sushobhna Batra
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Clarissa Valdez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Skyler P Taylor
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Victor A Manon
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Anthony R Vega
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Sourav Kolay
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nigel J Cairns
- Department of Clinical and Biological Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Charles L White
- Department of Pathology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States.
- Department of Neurology, Dallas, United States.
| |
Collapse
|
2
|
Fleming AC, Rao NR, Wright M, Savas JN, Kiskinis E. The ALS-associated co-chaperone DNAJC7 mediates neuroprotection against proteotoxic stress by modulating HSF1 activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626216. [PMID: 39651147 PMCID: PMC11623670 DOI: 10.1101/2024.12.01.626216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The degeneration of neurons in patients with amyotrophic lateral sclerosis (ALS) is commonly associated with accumulation of misfolded, insoluble proteins. Heat shock proteins (HSPs) are central regulators of protein homeostasis as they fold newly synthesized proteins and refold damaged proteins. Heterozygous loss-of- function mutations in the DNAJC7 gene that encodes an HSP co-chaperone were recently identified as a cause for rare forms of ALS, yet the mechanisms underlying pathogenesis remain unclear. Using mass spectrometry, we found that the DNAJC7 interactome in human motor neurons (MNs) is enriched for RNA binding proteins (RBPs) and stress response chaperones. MNs generated from iPSCs with the ALS-associated mutation R156X in DNAJC7 exhibit increased insolubility of its client RBP HNRNPU and associated RNA metabolism alterations. Additionally, DNAJC7 haploinsufficiency renders MNs increasingly susceptible to proteotoxic stress and cell death as a result of an ablated HSF1 stress response pathway. Critically, expression of HSF1 in mutant DNAJC7 MNs is sufficient to rescue their sensitivity to proteotoxic stress, while postmortem ALS patient cortical neurons exhibit a reduction in the expression of HSF1 pathway genes. Taken together, our work identifies DNAJC7 as a crucial mediator of HNRNPU function and stress response pathways in human MNs and highlights HSF1 as a therapeutic target in ALS.
Collapse
|
3
|
Di Lorenzo D. Tau Protein and Tauopathies: Exploring Tau Protein-Protein and Microtubule Interactions, Cross-Interactions and Therapeutic Strategies. ChemMedChem 2024; 19:e202400180. [PMID: 39031682 DOI: 10.1002/cmdc.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Tau, a microtubule-associated protein (MAP), is essential to maintaining neuronal stability and function in the healthy brain. However, aberrant modifications and pathological aggregations of Tau are implicated in various neurodegenerative disorders, collectively known as tauopathies. The most common Tauopathy is Alzheimer's Disease (AD) counting nowadays more than 60 million patients worldwide. This comprehensive review delves into the multifaceted realm of Tau protein, puzzling out its intricate involvement in both physiological and pathological roles. Emphasis is put on Tau Protein-Protein Interactions (PPIs), depicting its interaction with tubulin, microtubules and its cross-interaction with other proteins such as Aβ1-42, α-synuclein, and the chaperone machinery. In the realm of therapeutic strategies, an overview of diverse possibilities is presented with their relative clinical progresses. The focus is mostly addressed to Tau protein aggregation inhibitors including recent small molecules, short peptides and peptidomimetics with specific focus on compounds that showed a double anti aggregative activity on both Tau protein and Aβ amyloid peptide. This review amalgamates current knowledge on Tau protein and evolving therapeutic strategies, providing a comprehensive resource for researchers seeking to deepen their understanding of the Tau protein and for scientists involved in the development of new peptide-based anti-aggregative Tau compounds.
Collapse
Affiliation(s)
- Davide Di Lorenzo
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| |
Collapse
|
4
|
Geng Y, Gai Y, Zhang Y, Zhao S, Jiang A, Li X, Deng K, Zhang F, Tan L, Song L. Genome-Wide Identification and Interaction Analysis of Turbot Heat Shock Protein 40 and 70 Families Suggest the Mechanism of Chaperone Proteins Involved in Immune Response after Bacterial Infection. Int J Mol Sci 2024; 25:7963. [PMID: 39063205 PMCID: PMC11277129 DOI: 10.3390/ijms25147963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hsp40-Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein-protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40-Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot.
Collapse
Affiliation(s)
- Yuanwei Geng
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Yuxuan Gai
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
- Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanping Zhang
- College of Entrepreneurship and Innovation, Qingdao Agricultural University, Qingdao 266109, China
| | - Shengwei Zhao
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Anlan Jiang
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Xueqing Li
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Kaiqing Deng
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Fuxuan Zhang
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Lingling Tan
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Lin Song
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
- Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
5
|
Batra S, Vaquer-Alicea JI, Valdez C, Taylor SP, Manon VA, Vega AR, Kashmer OM, Kolay S, Lemoff A, Cairns NJ, White CL, Diamond MI. VCP regulates early tau seed amplification via specific cofactors. RESEARCH SQUARE 2024:rs.3.rs-4307848. [PMID: 38826306 PMCID: PMC11142303 DOI: 10.21203/rs.3.rs-4307848/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. In vitro seeding reactions typically take days, yet seeding into the complex cytoplasmic milieu happens within hours, implicating a machinery with unknown players that controls this process in the acute phase. Methods We used proximity labeling to identify factors that control seed amplification within 5h of seed exposure. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity 5h after seeded intracellular tau aggregation. Valosin containing protein (VCP/p97) was the top hit. VCP harbors dominant mutations that underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We used immortalized cells and human neurons to study the effects of VCP on tau seeding. We exposed cells to fibrils or brain homogenates in cell culture media and measured effects on uptake and induction of intracellular tau aggregation following various genetic and chemical manipulations of VCP. Results VCP knockdown reduced tau seeding. Chemical inhibitors had opposing effects on aggregation in HEK293T tau biosensor cells and human neurons alike: ML-240 increased seeding efficiency, whereas NMS-873 decreased it. The inhibitors were effective only when administered within 8h of seed exposure, indicating a role for VCP early in seed processing. We screened 30 VCP co-factors in HEK293T biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. By contrast, reduction of FAF2 increased tau seeding. Conclusions Divergent effects on tau seeding of chemical inhibitors and cofactor reduction indicate that VCP regulates this process. This is consistent with a dedicated cytoplasmic processing complex based on VCP that directs seeds acutely towards degradation vs. amplification.
Collapse
Affiliation(s)
- Sushobhna Batra
- UT Southwestern: The University of Texas Southwestern Medical Center
| | | | - Clarissa Valdez
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Skyler P Taylor
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Victor A Manon
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Anthony R Vega
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Omar M Kashmer
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Sourav Kolay
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Andrew Lemoff
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Nigel J Cairns
- University of Exeter Faculty of Health and Life Sciences
| | - Charles L White
- UT Southwestern: The University of Texas Southwestern Medical Center
| | - Marc I Diamond
- UT Southwestern: The University of Texas Southwestern Medical Center
| |
Collapse
|
6
|
Diamond MI. Travels with tau prions. Cytoskeleton (Hoboken) 2024; 81:83-88. [PMID: 37950616 DOI: 10.1002/cm.21806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/13/2023]
Abstract
Tau was originally identified as a microtubule associated protein, and subsequently recognized to constitute the fibrillar assemblies found in Alzheimer disease and related neurodegenerative tauopathies. Point mutations in the microtubule associated protein tau (MAPT) gene cause dominantly inherited tauopathies, and most predispose it to aggregate. This indicates tau aggregation underlies pathogenesis of tauopathies. Our work has suggested that tau functions as a prion, forming unique intracellular pathological assemblies that subsequently move to other cells, inducing further aggregation that underlies disease progression. Remarkably, in simple cells tau forms stably propagating aggregates of distinct conformation, termed strains. Each strain induces a unique and, in some cases, transmissible, neuropathological phenotype upon inoculation into a mouse model. After binding heparan sulfate proteoglycans on the plasma membrane, tau assemblies enter cells via macropinocytosis. From within a vesicle, if not trafficked to the endolysosomal system, tau subsequently enters the cytoplasm, where it becomes a template for its own replication, apparently after processing by valosin containing protein. The smallest seed unit is a stable monomer, which suggests that initial folding events in tau presage subsequent pathological aggregation. The study of tau prions has raised important questions about basic cell biological processes that underlie their replication and propagation, with implications for therapy of tauopathies.
Collapse
Affiliation(s)
- Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Esquivel AR, Hill SE, Blair LJ. DnaJs are enriched in tau regulators. Int J Biol Macromol 2023; 253:127486. [PMID: 37852393 PMCID: PMC10842427 DOI: 10.1016/j.ijbiomac.2023.127486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The aberrant accumulation of tau protein is implicated as a pathogenic factor in many neurodegenerative diseases. Tau seeding may underlie its predictable spread in these diseases. Molecular chaperones can modulate tau pathology, but their effects have mainly been studied in isolation. This study employed a semi-high throughput assay to identify molecular chaperones influencing tau seeding using Tau RD P301S FRET Biosensor cells, which express a portion of tau containing the frontotemporal dementia-related P301S tau mutation fused to a FRET biosensor. Approximately fifty chaperones from five major families were screened using live cell imaging to monitor FRET-positive tau seeding. Among the tested chaperones, five exhibited significant effects on tau in the primary screen. Notably, three of these were from the DnaJ family. In subsequent studies, overexpression of DnaJA2, DnaJB1, and DnaJB6b resulted in significant reductions in tau levels. Knockdown experiments by shRNA revealed an inverse correlation between DnaJB1 and DnaJB6b with tau levels. DnaJB6b overexpression, specifically, reduced total tau levels in a cellular model with a pre-existing pool of tau, partially through enhanced proteasomal degradation. Further, DnaJB6b interacted with tau complexes. These findings highlight the potent chaperone activity within the DnaJ family, particularly DnaJB6b, towards tau.
Collapse
Affiliation(s)
- Abigail R Esquivel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Shannon E Hill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Laura J Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA; Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
8
|
Chang YL, Yang CC, Huang YY, Chen YA, Yang CW, Liao CY, Li H, Wu CS, Lin CH, Teng SC. The HSP40 family chaperone isoform DNAJB6b prevents neuronal cells from tau aggregation. BMC Biol 2023; 21:293. [PMID: 38110916 PMCID: PMC10729500 DOI: 10.1186/s12915-023-01798-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder with clinical presentations of progressive cognitive and memory deterioration. The pathologic hallmarks of AD include tau neurofibrillary tangles and amyloid plaque depositions in the hippocampus and associated neocortex. The neuronal aggregated tau observed in AD cells suggests that the protein folding problem is a major cause of AD. J-domain-containing proteins (JDPs) are the largest family of cochaperones, which play a vital role in specifying and directing HSP70 chaperone functions. JDPs bind substrates and deliver them to HSP70. The association of JDP and HSP70 opens the substrate-binding domain of HSP70 to help the loading of the clients. However, in the initial HSP70 cycle, which JDP delivers tau to the HSP70 system in neuronal cells remains unclear. RESULTS We screened the requirement of a diverse panel of JDPs for preventing tau aggregation in the human neuroblastoma cell line SH-SY5Y by a filter retardation method. Interestingly, knockdown of DNAJB6, one of the JDPs, displayed tau aggregation and overexpression of DNAJB6b, one of the isoforms generated from the DNAJB6 gene by alternative splicing, reduced tau aggregation. Further, the tau bimolecular fluorescence complementation assay confirmed the DNAJB6b-dependent tau clearance. The co-immunoprecipitation and the proximity ligation assay demonstrated the protein-protein interaction between tau and the chaperone-cochaperone complex. The J-domain of DNAJB6b was critical for preventing tau aggregation. Moreover, reduced DNAJB6 expression and increased tau aggregation were detected in an age-dependent manner in immunohistochemical analysis of the hippocampus tissues of a mouse model of tau pathology. CONCLUSIONS In summary, downregulation of DNAJB6b increases the insoluble form of tau, while overexpression of DNAJB6b reduces tau aggregation. Moreover, DNAJB6b associates with tau. Therefore, this study reveals that DNAJB6b is a direct sensor for its client tau in the HSP70 folding system in neuronal cells, thus helping to prevent AD.
Collapse
Affiliation(s)
- Ya-Lan Chang
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chan-Chih Yang
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Yun-Yu Huang
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Yi-An Chen
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chia-Wei Yang
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chia-Yu Liao
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Hsun Li
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 10051, Taiwan
| | - Ching-Shyi Wu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 10051, Taiwan.
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan.
- Center of Precision Medicine, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
9
|
Batra S, Vaquer-Alicea J, Manon VA, Kashmer OM, Lemoff A, Cairns NJ, White CL, Diamond MI. VCP increases or decreases tau seeding using specific cofactors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555637. [PMID: 37693404 PMCID: PMC10491269 DOI: 10.1101/2023.08.30.555637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. In vitro seeding reactions typically take days, yet seeding into the complex cytoplasmic milieu can happen within hours. A cellular machinery might regulate this process, but potential players are unknown. Methods We used proximity labeling to identify factors that control seed amplification. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity upon seeded intracellular tau aggregation. We identified valosin containing protein (VCP/p97) 5h after seeding. Mutations in VCP underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We utilized tau biosensors, a cellular model for tau aggregation, to study the effects of VCP on tau seeding. Results VCP knockdown reduced tau seeding. However, distinct chemical inhibitors of VCP and the proteasome had opposing effects on aggregation, but only when given <8h of seed exposure. ML-240 increased seeding efficiency ~40x, whereas NMS-873 decreased seeding efficiency by 50%, and MG132 increased seeding ~10x. We screened VCP co-factors in HEK293 biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. Reduction of FAF2 and UBXN6 increased tau seeding. Conclusions VCP uses distinct cofactors to determine seed replication efficiency, consistent with a dedicated cytoplasmic processing complex that directs seeds towards dissolution vs. amplification.
Collapse
Affiliation(s)
- Sushobhna Batra
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Victor A Manon
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nigel J Cairns
- Department of Clinical and Biological Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Charles L White
- Department of Pathology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Neurology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|