1
|
Flavell SW, Oren-Suissa M, Stern S. Sources of behavioral variability in C. elegans: Sex differences, individuality, and internal states. Curr Opin Neurobiol 2025; 91:102984. [PMID: 39986247 PMCID: PMC12038806 DOI: 10.1016/j.conb.2025.102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/04/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Animal behavior varies across different timescales. This includes rapid shifts in behavior as animals transition between states and long-term changes that develop throughout an organism's life. This review presents the contributions of sex differences, individuality, and internal states to behavioral variability in the roundworm Caenorhabditis elegans. Sex is determined by chromosome composition, which directs neuronal development through gene regulation and experience to shape dimorphic behaviors. Genetically identical individuals within the same sex and reared in the same conditions still display distinctive, long-lasting behavioral traits that are controlled by neuromodulatory systems. At all life stages, internal states within the individual, shaped by external factors like food and stress, modulate behavior over minutes to hours. The interplay between these factors gives rise to rich behavioral diversity in C. elegans. These factors impact behavior in a sequential manner, as genetic sex, individuality, and internal states influence behavior over progressively finer timescales.
Collapse
Affiliation(s)
- Steven W Flavell
- Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Shay Stern
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Lee H, Boor SA, Hilbert ZA, Meisel JD, Park J, Wang Y, McKeown R, Fischer SEJ, Andersen EC, Kim DH. Genetic variants that modify neuroendocrine gene expression and foraging behavior of C. elegans. SCIENCE ADVANCES 2024; 10:eadk9481. [PMID: 38865452 PMCID: PMC11168454 DOI: 10.1126/sciadv.adk9481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
The molecular mechanisms underlying diversity in animal behavior are not well understood. A major experimental challenge is determining the contribution of genetic variants that affect neuronal gene expression to differences in behavioral traits. In Caenorhabditis elegans, the neuroendocrine transforming growth factor-β ligand, DAF-7, regulates diverse behavioral responses to bacterial food and pathogens. The dynamic neuron-specific expression of daf-7 is modulated by environmental and endogenous bacteria-derived cues. Here, we investigated natural variation in the expression of daf-7 from the ASJ pair of chemosensory neurons. We identified common genetic variants in gap-2, encoding a Ras guanosine triphosphatase (GTPase)-activating protein homologous to mammalian synaptic Ras GTPase-activating protein, which modify daf-7 expression cell nonautonomously and promote exploratory foraging behavior in a partially DAF-7-dependent manner. Our data connect natural variation in neuron-specific gene expression to differences in behavior and suggest that genetic variation in neuroendocrine signaling pathways mediating host-microbe interactions may give rise to diversity in animal behavior.
Collapse
Affiliation(s)
- Harksun Lee
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sonia A. Boor
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zoë A. Hilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua D. Meisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaeseok Park
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sylvia E. J. Fischer
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Erik C. Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21212, USA
| | - Dennis H. Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Vodičková A, Müller-Eigner A, Okoye CN, Bischer AP, Horn J, Koren SA, Selim NA, Wojtovich AP. Mitochondrial energy state controls AMPK-mediated foraging behavior in C. elegans. SCIENCE ADVANCES 2024; 10:eadm8815. [PMID: 38630817 PMCID: PMC11023558 DOI: 10.1126/sciadv.adm8815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Organisms surveil and respond to their environment using behaviors entrained by metabolic cues that reflect food availability. Mitochondria act as metabolic hubs and at the center of mitochondrial energy production is the protonmotive force (PMF), an electrochemical gradient generated by metabolite consumption. The PMF serves as a central integrator of mitochondrial status, but its role in governing metabolic signaling is poorly understood. We used optogenetics to dissipate the PMF in Caenorhabditis elegans tissues to test its role in food-related behaviors. Our data demonstrate that PMF reduction in the intestine is sufficient to initiate locomotor responses to acute food deprivation. This behavioral adaptation requires the cellular energy regulator AMP-activated protein kinase (AMPK) in neurons, not in the intestine, and relies on mitochondrial dynamics and axonal trafficking. Our results highlight a role for intestinal PMF as an internal metabolic cue, and we identify a bottom-up signaling axis through which changes in the PMF trigger AMPK activity in neurons to promote foraging behavior.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Annika Müller-Eigner
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Chidozie N. Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrew P. Bischer
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacob Horn
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Nada Ahmed Selim
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrew P. Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|