1
|
Hashikawa K, Hashikawa Y, Briones B, Ishii K, Liu Y, Rossi MA, Basiri ML, Chen JY, Ahmad OR, Mukundan RV, Johnston NL, Simon RC, Soetedjo JC, Siputro JR, McHenry JA, Palmiter RD, Rubinow DR, Zweifel LS, Stuber GD. Esr1-Dependent Signaling and Transcriptional Maturation in the Medial Preoptic Area of the Hypothalamus Shapes the Development of Mating Behavior during Adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640339. [PMID: 40060480 PMCID: PMC11888408 DOI: 10.1101/2025.02.26.640339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Mating and other behaviors emerge during adolescence through the coordinated actions of steroid hormone signaling throughout the nervous system and periphery. In this study, we investigated the transcriptional dynamics of the medial preoptic area (MPOA), a critical region for reproductive behavior, using single-cell RNA sequencing (scRNAseq) and in situ hybridization techniques in male and female mice throughout adolescence development. Our findings reveal that estrogen receptor 1 (Esr1) plays a pivotal role in the transcriptional maturation of GABAergic neurons within the MPOA during adolescence. Deletion of the estrogen receptor gene, Esr1, in GABAergic neurons (Vgat+) disrupted the developmental progression of mating behaviors in both sexes, while its deletion in glutamatergic neurons (Vglut2+) had no observable effect. In males and females, these neurons displayed distinct transcriptional trajectories, with hormone-dependent gene expression patterns emerging throughout adolescence and regulated by Esr1. Esr1 deletion in MPOA GABAergic neurons, prior to adolescence, arrested adolescent transcriptional progression of these cells and uncovered sex-specific gene-regulatory networks associated with Esr1 signaling. Our results underscore the critical role of Esr1 in orchestrating sex-specific transcriptional dynamics during adolescence, revealing gene regulatory networks implicated in the development of hypothalamic controlled reproductive behaviors.
Collapse
Affiliation(s)
- Koichi Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Yoshiko Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Brandy Briones
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Kentaro Ishii
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Yuejia Liu
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Mark A. Rossi
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Marcus L. Basiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
- University of North Carolina, Chapel Hill, NC 27599
| | - Jane Y. Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Omar R. Ahmad
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Rishi V. Mukundan
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Nathan L. Johnston
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Rhiana C. Simon
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - James C. Soetedjo
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Jason R. Siputro
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Jenna A. McHenry
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708
| | - Richard D. Palmiter
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - David R. Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Larry S. Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195
| |
Collapse
|