1
|
Samsonova JV, Saushkin NY, Osipov AP. Dried Blood Spots technology for veterinary applications and biological investigations: technical aspects, retrospective analysis, ongoing status and future perspectives. Vet Res Commun 2022; 46:655-698. [PMID: 35771305 PMCID: PMC9244892 DOI: 10.1007/s11259-022-09957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Dried Blood Spots (DBS) technology has become a valuable tool in medical studies, however, in veterinary and biological research DBS technology applications are still limited. Up-to-date no review has comprehensively integrated all the evidence existing across the fields, technologies and animal species. In this paper we summarize the current applications of DBS technology in the mentioned areas, and provide a scope of different types of dried sample carriers (cellulose and non-cellulose), sampling devices, applicable methods for analyte extraction and detection. Mammals, birds, insects and other species are represented as the study objects. Besides the blood, the review considers a variety of specimens, such as milk, saliva, tissue samples and others. The main applications of dried samples highlighted in the review include epidemiological surveys and monitoring for infections agents or specific antibodies for disease/vaccination control in households and wildlife. Besides the genetic investigations, the paper describes detection of environmental contaminants, pregnancy diagnosis and many other useful applications of animal dried samples. The paper also analyses dried sample stability and storage conditions for antibodies, viruses and other substances. Finally, recent developments and future research for DBS technology in veterinary medicine and biological sciences are discussed.
Collapse
Affiliation(s)
- Jeanne V Samsonova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| | | | | |
Collapse
|
2
|
Barst BD, Wooller MJ, O’Brien DM, Santa-Rios A, Basu N, Köck G, Johnson JJ, Muir DC. Dried Blood Spot Sampling of Landlocked Arctic Char (Salvelinus alpinus) for Estimating Mercury Exposure and Stable Carbon Isotope Fingerprinting of Essential Amino Acids. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:893-903. [PMID: 32045959 PMCID: PMC7748106 DOI: 10.1002/etc.4686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Dried blood spots (DBS), created by applying and drying a whole blood sample onto filter paper, provide a simple and minimally invasive procedure for collecting, transporting, and storing blood. Because DBS are ideal for use in field and resource-limited settings, we aimed to develop a simple and accurate DBS-based approach for assessing mercury (Hg) exposure and dietary carbon sources for landlocked Arctic char, a sentinel fish species in the Arctic. We collected liquid whole blood (from the caudal vein), muscle, liver, and brains of Arctic char (n = 36) from 8 lakes spanning a Hg gradient in the Canadian High Arctic. We measured total Hg concentrations ([THg]) of field-prepared DBS and Arctic char tissues. Across a considerable range, [THg] of DBS (0.04-3.38 μg/g wet wt) were highly correlated with [THg] of all tissues (r2 range = 0.928-0.996). We also analyzed the compound-specific carbon isotope ratios (expressed as δ13 C values) of essential amino acids (EAAs) isolated from DBS, liquid whole blood, and muscle. The δ13 C values of 5 EAAs (δ13 CEAAs ; isoleucine [Ile], leucine [Leu], phenylalanine [Phe], valine [Val], and threonine [Thr]) from DBS were highly correlated with δ13 CEAAs of liquid whole blood (r2 range = 0.693-0.895) and muscle (r2 range = 0.642-0.881). The patterns of δ13 CEAAs of landlocked Arctic char were remarkably consistent across sample types and indicate that EAAs are most likely of algal origin. Because a small volume of blood (~50 µL) dried on filter paper can be used to determine Hg exposure levels of various tissues and to fingerprint carbon sources, DBS sampling may decrease the burdens of research and may be developed as a nonlethal sampling technique. Environ Toxicol Chem 2020;39:893-903. © 2020 SETAC.
Collapse
Affiliation(s)
- Benjamin D. Barst
- Alaska Stable Isotope Facility, Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Matthew J. Wooller
- Alaska Stable Isotope Facility, Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Diane M. O’Brien
- Biology and Wildlife Department, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Andrea Santa-Rios
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Günter Köck
- Institute for Interdisciplinary Mountain Research (ÖAW-IGF), 6020 Innsbruck, Austria
| | - Jessica J. Johnson
- Biology and Wildlife Department, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Derek C.G. Muir
- Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario, L7S 1A1, Canada
| |
Collapse
|
3
|
HAIR, WHOLE BLOOD, AND BLOOD-SOAKED CELLULOSE PAPER-BASED RISK ASSESSMENT OF MERCURY CONCENTRATIONS IN STRANDED CALIFORNIA PINNIPEDS. J Wildl Dis 2019. [DOI: 10.7589/2018-11-276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|