1
|
Begeman L, Suu-Ire R, Banyard AC, Drosten C, Eggerbauer E, Freuling CM, Gibson L, Goharriz H, Horton DL, Jennings D, Marston DA, Ntiamoa-Baidu Y, Riesle Sbarbaro S, Selden D, Wise EL, Kuiken T, Fooks AR, Müller T, Wood JLN, Cunningham AA. Experimental Lagos bat virus infection in straw-colored fruit bats: A suitable model for bat rabies in a natural reservoir species. PLoS Negl Trop Dis 2020; 14:e0008898. [PMID: 33320860 PMCID: PMC7771871 DOI: 10.1371/journal.pntd.0008898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/29/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for lyssavirus associated bat rabies in a natural reservoir host, and can help with the investigation of lyssavirus infection dynamics in bats.
Collapse
Affiliation(s)
- Lineke Begeman
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
- * E-mail: (LB); (AAC)
| | - Richard Suu-Ire
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
| | - Ashley C. Banyard
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Christian Drosten
- Institute of Virology, Medical University of Berlin, Berlin, Germany
| | - Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
- Thüringer Landesamt für Verbraucherschutz, Bad Langensalza, Thüringen, Germany
| | - Conrad M. Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
| | - Louise Gibson
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
| | - Hooman Goharriz
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Daniel L. Horton
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Daisy Jennings
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Denise A. Marston
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Yaa Ntiamoa-Baidu
- Centre for African Wetlands / Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Silke Riesle Sbarbaro
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- University of Cambridge, Cambridge, United Kingdom
| | - David Selden
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Emma L. Wise
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
| | | | - Andrew A. Cunningham
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- * E-mail: (LB); (AAC)
| |
Collapse
|
2
|
Construction and evaluation of recombinant Lactobacillus plantarum NC8 delivering one single or two copies of G protein fused with a DC-targeting peptide (DCpep) as novel oral rabies vaccine. Vet Microbiol 2020; 251:108906. [PMID: 33160196 DOI: 10.1016/j.vetmic.2020.108906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022]
Abstract
Rabies remains an important public health threat in most developing countries. To develop a more effective and safe oral vaccine against rabies, we constructed recombinant Lactobacillus plantarum NC8 carrying one or two copies of the G gene with a dendritic cell-targeting peptide (DCpep) fused at the C-terminal designated NC8-pSIP409-sRVG or NC8-pSIP409-dRVG, respectively. The immunogenicity and protective efficacy of these recombinant Lactobacillus plantarum against RABV were evaluated by oral administration in a mouse model. The results showed that recombinant NC8-pSIP409-dRVG possessed more G protein, resulting in more functional maturation of DCs. After three cycle of oral immunization, NC8-pSIP409-dRVG induced significantly higher levels of specific IgG antibody and mixed Th1/Th2 with a strong Th1-biasd immune response in mice. Most importantly, although the titers of RABV neutralizing antibody (VNA) were below the threshold of 0.5 IU/mL, the NC8-pSIP409-dRVG could protect 60 % of inoculated mice against lethal RABV challenge. These data reveal that recombinant NC8-pSIP409-dRVG may be a novel and promising oral vaccine candidate to prevent and control of animal rabies.
Collapse
|