1
|
Kang K, Zhou T, Gong J, Chen W, Yue X, Zhang D, Yue L. A bitter taste receptor liganded by oxalic acid inhibits brown planthopper feeding by promoting CREB phosphorylation via the PI3K-AKT signaling pathway. Int J Biol Macromol 2025; 290:138999. [PMID: 39708894 DOI: 10.1016/j.ijbiomac.2024.138999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Insect gustatory receptors play a critical role in modulating feeding behaviors by detecting external nutritional cues through complex biochemical pathways. Bitter taste receptors are essential for insects to identify and avoid toxins. However, the detailed molecular and cellular mechanisms by which these receptors influence insect feeding behavior remain poorly understood. Our previous research identified the bitter taste receptor NlGr23a in the brown planthopper (BPH), which specifically binds to oxalic acid and elicits a significant feeding rejection response. In this study, using an Sf9 cell line stably expressing NlGr23a, we demonstrated that oxalic acid exposure significantly enhances phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB), a protein associated with BPH food consumption. Further analysis revealed the involvement of phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway in facilitating CREB phosphorylation upon activation by oxalic acid-NlGr23a binding. These in vitro findings were corroborated by in vivo experiments examining the expression profiles of relevant proteins and protein kinases in BPHs fed an oxalic acid-supplemented diet. Our results elucidate the biochemical cascades triggered by oxalic acid-NlGr23a interaction, advancing our understanding of insect gustatory receptor-mediated feeding behavior modulation and potentially informing novel strategies for integrated pest management.
Collapse
Affiliation(s)
- Kui Kang
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China
| | - Ting Zhou
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China
| | - Jun Gong
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China
| | - Weiwen Chen
- College of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Xiangzhao Yue
- School of Life Sciences, Shangrao Normal University, Shangrao 334001, China
| | - Daowei Zhang
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China.
| | - Lei Yue
- School of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Shrestha B, Nhuchhen Pradhan R, Nath DK, Lee Y. Cellular and molecular basis of IR3535 perception in Drosophila. PEST MANAGEMENT SCIENCE 2022; 78:793-802. [PMID: 34708523 DOI: 10.1002/ps.6693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND IR3535 is among the most widely used synthetic insect repellents, particularly for the mitigation of mosquito-borne diseases such as malaria, yellow fever, dengue and Zika, as well as to control flies, ticks, fleas, lice and mites. These insects are well-known vectors of deadly diseases that affect humans, livestock and crops. Moreover, global warming could increase the populations of these vectors. RESULTS Here, we performed IR3535 dose-response analyses on Drosophila melanogaster, a well-known insect model organism, using electrophysiology and binary food choice assays. Our findings indicated that bitter-sensing gustatory receptor neurons (GRNs) are indispensable to detect IR3535. Further, potential candidate gustatory receptors were screened, among which GR47a was identified as a key molecular sensor. IR3535 concentrations in the range 0.1-0.4% affected larval development and mortality. In addition, N,N-diethyl-m-toluamide (DEET, another commonly used insecticide) was found to exert synergistic effects when co-administered with IR3535. CONCLUSION Our findings confirmed that IR3535 directly activates bitter-sensing GRNs, which are mediated by GR47a. This relatively safe and highly potent insecticide can be largely used in combination with DEET to increase its efficiency to protect livestock and crops. Collectively, our findings suggest that the molecular sensors elucidated herein could be used as targets for the development of alternative insecticides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - Roshani Nhuchhen Pradhan
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - Dharmendra Kumar Nath
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Aryal B, Lee Y. Histamine gustatory aversion in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103586. [PMID: 33992752 DOI: 10.1016/j.ibmb.2021.103586] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Many foods and drinks contain histamine; however, the mechanisms that drive histamine taste perception have not yet been investigated. Here, we use a simple model organism, Drosophila melanogaster, to dissect the molecular sensors required to taste histamine. We first investigated histidine and histamine taste perception by performing a binary food choice assay and electrophysiology to identify essential sensilla for histamine sensing in the labellum. Histamine was found to activate S-type sensilla, which harbor bitter-sensing gustatory receptor neurons. Moreover, unbiased genetic screening for chemoreceptors revealed that a gustatory receptor, GR22e and an ionotropic receptor, IR76b are required for histamine sensing. Ectopic expression of GR22e was sufficient to induce a response in I-type sensilla, which normally do not respond to histamine. Taken together, our findings provide new insights into the mechanisms by which insects discriminate between the toxic histamine and beneficial histidine via their taste receptors.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea; Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
4
|
Shrestha B, Lee Y. Mechanisms of DEET gustation in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103550. [PMID: 33549816 DOI: 10.1016/j.ibmb.2021.103550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
DEET is the most widely used active ingredient in insect repellents and offers protection against insect bites. We previously reported that DEET suppresses the feeding behavior of Drosophila, which is guided by gustatory receptors (GRs) in bitter-sensing gustatory receptor neurons. Here, we sought to identify new candidates using egg-laying assays. Upon screening all GR mutants, GR89a was identified as a potential DEET receptor. Gr89a mutants exhibited reduced oviposition avoidance, feeding avoidance, and electrophysiological responses compared to Gr32a, Gr33a, and Gr66a mutants. However, GR89a was found to modulate DEET avoidance, as demonstrated by genetic and RNA interference assays. Furthermore, we found that DEET ingestion severely affected larval and pupal development and survival, and therefore may act as an effective larvicide.
Collapse
Affiliation(s)
- Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea; Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
5
|
Puri S, Lee Y. Salt Sensation and Regulation. Metabolites 2021; 11:metabo11030175. [PMID: 33802977 PMCID: PMC8002656 DOI: 10.3390/metabo11030175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Taste sensation and regulation are highly conserved in insects and mammals. Research conducted over recent decades has yielded major advances in our understanding of the molecular mechanisms underlying the taste sensors for a variety of taste sensations and the processes underlying regulation of ingestion depending on our internal state. Salt (NaCl) is an essential ingested nutrient. The regulation of internal sodium concentrations for physiological processes, including neuronal activity, fluid volume, acid–base balance, and muscle contraction, are extremely important issues in animal health. Both mammals and flies detect low and high NaCl concentrations as attractive and aversive tastants, respectively. These attractive or aversive behaviors can be modulated by the internal nutrient state. However, the differential encoding of the tastes underlying low and high salt concentrations in the brain remain unclear. In this review, we discuss the current view of taste sensation and modulation in the brain with an emphasis on recent advances in this field. This work presents new questions that include but are not limited to, “How do the fly’s neuronal circuits process this complex salt code?” and “Why do high concentrations of salt induce a negative valence only when the need for salt is low?” A better understanding of regulation of salt homeostasis could improve our understanding of why our brains enjoy salty food so much.
Collapse
Affiliation(s)
- Sonali Puri
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Korea;
| | - Youngseok Lee
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Korea;
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea
- Correspondence: ; Tel.: +82-2-910-5734
| |
Collapse
|
6
|
Shrestha B, Lee Y. Cellular and molecular mechanisms of DEET toxicity and disease-carrying insect vectors: a review. Genes Genomics 2020; 42:1131-1144. [DOI: 10.1007/s13258-020-00991-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022]
|
7
|
Rimal S, Lee Y. Molecular sensor of nicotine in taste of Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103178. [PMID: 31226410 DOI: 10.1016/j.ibmb.2019.103178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Nicotine is an alkaloid and potent parasympathomimetic stimulant found in the leaves of many plants including Nicotiana tabacum, which functions as an anti-herbivore chemical and an insecticide. Chemoreceptors embedded in the gustatory receptor neurons (GRNs) enable animals to judge the quality of bitter compounds and respond to them. Various taste receptors such as gustatory receptors (GRs), ionotropic receptors (IRs), transient receptor potential channels (TRPs), and pickpocket channels (PPKs) have been shown to have important roles in taste sensation. However, the mechanism underlying nicotine taste sensation has not been resolved in the insect model. Here we identify molecular receptors to detect the taste of nicotine and provide electrophysiological and behavioral evidence that gustatory receptors are required for avoiding nicotine-laced foods. Our results demonstrate that gustatory receptors are reasonable targets to develop new pesticides that maximize the insecticidal effects of nicotine.
Collapse
Affiliation(s)
- Suman Rimal
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
8
|
Raad H, Robichon A. The pleiotropic effects of Innexin genes expressed in Drosophila glia encompass wing chemosensory sensilla. J Neurosci Res 2019; 97:1319-1330. [PMID: 31257643 DOI: 10.1002/jnr.24485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 11/07/2022]
Abstract
The neuroanatomy of Drosophila wing chemosensilla and the analysis of their sensory organ precursor cell lineage have demonstrated that they are surprisingly related to taste perception. The microarchitecture of wing bristles limits the use of electrophysiology methods to investigate wing chemosensory mechanisms. However, by monitoring the fluorescence of the complex calcium/GCaMP, calcium flux triggered upon tastant stimulation was observed within sensilla aligned along the wing anterior nerve. This string of fluorescent puncta was impaired in wings of Innexin 2 (Inx2) mutant flies; although it is unclear whether the Innexin proteins act at the level of the wing imaginal disc, adult wing and/or at both levels. Glial cells known to shelter Innexin(s) expression have no documented role in adult chemosensory sensilla. Our data suggest that Innexin(s) are likely required for the maturation of functional wing chemosensilla in adulthood. The unexpected presence of most Innexin transcripts in adult wing RNAseq data set argues for the expression of Innexin proteins in the larval imaginal wing disc that are continued in wing chemosensilla at adulthood. OPEN PRACTICES: This article has earned an Open Data badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available as supporting materials and includes the electronic lab notebook. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Collapse
Affiliation(s)
- Hussein Raad
- INRA, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France.,Lebanese International University, Mazraa, Lebanon
| | - Alain Robichon
- INRA, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
9
|
Identification and functional characterization of D-fructose receptor in an egg parasitoid, Trichogramma chilonis. PLoS One 2019; 14:e0217493. [PMID: 31216287 PMCID: PMC6583964 DOI: 10.1371/journal.pone.0217493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/13/2019] [Indexed: 11/19/2022] Open
Abstract
In insects, the gustatory system has a critical function not only in selecting food and feeding behaviours but also in growth and metabolism. Gustatory receptors play an irreplaceable role in insect gustatory signalling. Trichogramma chilonis is an effective biocontrol agent against agricultural insect pests. However, the molecular mechanism of gustation in T. chilonis remains elusive. In this study, we found that T. chilonis adults had a preference for D-fructose and that D-fructose contributed to prolong longevity and improve fecundity. Then, We also isolated the full-length cDNA encoding candidate gustatory receptor (TchiGR43a) based on the transcriptome data of T. chilonis, and observed that the candidate gustatory receptor gene was expressed from the larval to adult stages. The expression levels of TchiGR43a were similar between female and male. A Xenopus oocyte expression system and two-electrode voltage-clamp recording further verified the function analysis of TchiGR43a. Electrophysiological results showed that TchiGR43a was exclusively tuned to D-fructose. By the studies of behaviour, molecular biology and electrophysiology in T. chilonis, our results lay a basic fundation of further study on the molecular mechanisms of gustatory reception and provide theoretical basis for the nutritional requirement of T. chilonis in biocontrol.
Collapse
|
10
|
Sang J, Rimal S, Lee Y. Gustatory receptor 28b is necessary for avoiding saponin in Drosophila melanogaster. EMBO Rep 2019; 20:embr.201847328. [PMID: 30622216 DOI: 10.15252/embr.201847328] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
Saponins function as a natural self-defense mechanism for plants to deter various insects due to their unpleasant taste and their toxicity. Here, we provide evidence that saponin from Quillaja saponaria functions as an antifeedant as well as an insecticide to ward off insects in both the larval and the adult stages. Using a behavioral screen of 26 mutant fly lines, we show that the Gr28b gene cluster plays a role in saponin avoidance in the labellum. The Gr28b mutant does not avoid saponin and exhibits increased lethality when fed saponin-mixed food. Tissue-specific rescue experiments with five different Gr28b isoforms revealed that only the Gr28b.c isoform is required for saponin sensation. We propose that in contrast to sensing many other bitter compounds, saponin sensing does not require the function of core taste receptors, such as GR32a, GR33a, and GR66a. Our results reveal a novel role for GR28b in taste. In addition, the ability of saponin to act as insecticides as well as antifeedants suggests its potential application in controlling insect pests.
Collapse
Affiliation(s)
- Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin University BK21 PLUS project, Seoul, Korea
| | - Suman Rimal
- Department of Bio and Fermentation Convergence Technology, Kookmin University BK21 PLUS project, Seoul, Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University BK21 PLUS project, Seoul, Korea
| |
Collapse
|
11
|
Lushchak O, Strilbytska OM, Yurkevych I, Vaiserman AM, Storey KB. Implications of amino acid sensing and dietary protein to the aging process. Exp Gerontol 2019; 115:69-78. [DOI: 10.1016/j.exger.2018.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 01/16/2023]
|
12
|
Poudel S, Kim Y, Gwak JS, Jeong S, Lee Y. Gustatory receptor 22e is essential for sensing chloroquine and strychnine in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 88:30-36. [PMID: 28751111 DOI: 10.1016/j.ibmb.2017.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Chloroquine, an amino quinolone derivative commonly used as an anti-malarial drug, is known to impart an unpleasant taste. Little research has been done to study chloroquine taste in insects, therefore, we examined both the deterrant properties and mechanisms underlying chloroquine perception in fruit flies. We identified the antifeedant effect of chloroquine by screening 21 gustatory receptor (Grs) mutants through behavioral feeding assays and electrophysiology experiments. We discovered that two molecular sensors, GR22e and GR33a, act as chloroquine receptors, and found that chloroquine-mediated activation of GRNs occurs through S-type sensilla. At the same time, we successfully recapitulated the chloroquine receptor by expressing GR22e in ectopic gustatory receptor neurons. We also found that GR22e forms a part of the strychnine receptor. We suggest that the Drosophila strychnine receptor might have a very complex structure since five different GRs are required for strychnine-induced action potentials.
Collapse
Affiliation(s)
- Seeta Poudel
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, South Korea
| | - Yunjung Kim
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, South Korea
| | - Jun-Seok Gwak
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, South Korea
| | - Sangyun Jeong
- Department of Molecular Biology, Chonbuk National University, Jeonju, Jeollabukdo 54896, South Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, South Korea.
| |
Collapse
|
13
|
Fat storage in Drosophila suzukii is influenced by different dietary sugars in relation to their palatability. PLoS One 2017; 12:e0183173. [PMID: 28817633 PMCID: PMC5560726 DOI: 10.1371/journal.pone.0183173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/31/2017] [Indexed: 01/14/2023] Open
Abstract
The peripheral sensitivity and palatability of different carbohydrates was evaluated and their nutritional value assessed in adult females of D. suzukii by means of an electrophysiological, behavioural and metabolic approach. The electrophysiological responses were recorded from the labellar "l" type sensilla stimulated with metabolizable mono- and disaccharides (glucose and maltose) and a non-metabolizable sugar (sucralose); the response rating and the palatability to the same sugars, evaluated by recording the proboscis extension reflex (PER), was maltose>glucose>sucralose. The nutritional value of carbohydrates was assessed by means of survival trials and fatty acids profile. Flies fed on a diet containing maltose had a longer lifespan than flies on monosaccharides, while flies fed on a diet containing sucralose had a shorter one. In addition, the ability to store fat seems to be influenced by the different sugars in the diet and is in relationship with their palatability. In fact, data showed a higher synthesis of palmitic and palmitoleic acids, most likely derived from de-novo lipogenesis with glucose as precursor, in flies fed with maltose and glucose than with non-metabolizable sucralose. In conclusion, these results suggest that the ability to select different sugars on the basis of their palatability may favour the storage of energy reserves such as fat by de-novo lipogenesis, determining a longer survival capability during prolonged periods of fasting.
Collapse
|
14
|
Poudel S, Lee Y. Gustatory Receptors Required for Avoiding the Toxic Compound Coumarin in Drosophila melanogaster. Mol Cells 2016; 39:310-5. [PMID: 26912085 PMCID: PMC4844937 DOI: 10.14348/molcells.2016.2250] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/04/2015] [Accepted: 12/17/2015] [Indexed: 11/27/2022] Open
Abstract
Coumarin is a phenolic compound that mainly affects the liver due to its metabolization into a toxic compound. The deterrent and ovicidal activities of coumarin in insect models such as Drosophila melanogaster have been reported. Here we explore the molecular mechanisms by which these insects protect themselves and their eggs from this toxic plant metabolite. Coumarin was fatal to the flies in a dosage-dependent manner. However, coumarin feeding could be inhibited through activation of the aversive gustatory receptor neurons (GRNs), but not the olfactory receptor neurons. Furthermore, three gustatory receptors, GR33a, GR66a, and GR93a, functioned together in coumarin detection by the proboscis. However, GR33a, but not GR66a and GR93a, was required to avoid coumarin during oviposition, with a choice of the same substrates provided as in binary food choice assay. Taken together, these findings suggest that anti-feeding activity and oviposition to avoid coumarin occur via separate mechanisms.
Collapse
Affiliation(s)
- Seeta Poudel
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 136-702,
Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 136-702,
Korea
| |
Collapse
|
15
|
Nano-architecture of gustatory chemosensory bristles and trachea in Drosophila wings. Sci Rep 2015; 5:14198. [PMID: 26381332 PMCID: PMC4585653 DOI: 10.1038/srep14198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
In the Drosophila wing anterior margin, the dendrites of gustatory neurons occupy the interior of thin and long bristles that present tiny pores at their extremities. Many attempts to measure ligand-evoked currents in insect wing gustatory neurons have been unsuccessful for technical reasons. The functions of this gustatory activity therefore remain elusive and controversial. To advance our knowledge on this understudied tissue, we investigated the architecture of the wing chemosensory bristles and wing trachea using Raman spectroscopy and fluorescence microscopy. We hypothesized that the wing gustatory hair, an open-ended capillary tube, and the wing trachea constitute biological systems similar to nano-porous materials. We present evidence that argues in favour of the existence of a layer or a bubble of air beneath the pore inside the gustatory hair. We demonstrate that these hollow hairs and wing tracheal tubes fulfil conditions for which the physics of fluids applied to open-ended capillaries and porous materials are relevant. We also document that the wing gustatory hair and tracheal architectures are capable of trapping volatile molecules from the environment, which might increase the efficiency of their spatial detection by way of wing vibrations or during flight.
Collapse
|