1
|
Punzón E, García-Castillo M, Rico MA, Padilla L, Pradera A. Local, systemic and immunologic safety comparison between xenogeneic equine umbilical cord mesenchymal stem cells, allogeneic canine adipose mesenchymal stem cells and placebo: a randomized controlled trial. Front Vet Sci 2023; 10:1098029. [PMID: 37266387 PMCID: PMC10229832 DOI: 10.3389/fvets.2023.1098029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Mesenchymal stem cells are multipotent cells with a wide range of therapeutic applications, including, among others, tissue regeneration. This work aims to test the safety (EUC-MSC) of intra-articular administration of equine umbilical cord mesenchymal stem cells in young healthy dogs under field conditions following single and repeated administration. This was compared with the safety profile of allogenic canine adipose derived mesenchymal stem cells (CAD-MSC) and placebo in order to define the safety of xenogeneic use of mesenchymal stem cells when administered intra-articular. Twenty-four police working dogs were randomized in three groups in a proportion 1:1:1. EUC-MSCs and CAD-MSCs were obtained from healthy donors and were manufactured following company SOPs and under GMP and GMP-like conditions, respectively, and compliant all necessary controls to ensure the quality of the treatment. The safety of the treatment was evaluated locally, systemically and immunologically. For this purpose, an orthopedic examination and Glasgow test for the assessment of pain in the infiltrated joint, blood tests, clinical examination and analysis of the humoral and cellular response to treatment were performed. No adverse events were detected following single and repeated MSC administration despite both equine and canine MSC generate antibody titres in the dogs. The intra-articular administration of equine umbilical cord mesenchymal stem cells in dogs has demonstrated to be safe.
Collapse
|
2
|
Nadine S, Fernandes IJ, Correia CR, Mano JF. Close-to-native bone repair via tissue-engineered endochondral ossification approaches. iScience 2022; 25:105370. [PMID: 36339269 PMCID: PMC9626746 DOI: 10.1016/j.isci.2022.105370] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to solve the clinical challenges related to bone grafting, several tissue engineering (TE) strategies have been proposed to repair critical-sized defects. Generally, the classical TE approaches are designed to promote bone repair via intramembranous ossification. Although promising, strategies that direct the osteogenic differentiation of mesenchymal stem/stromal cells are usually characterized by a lack of functional vascular supply, often resulting in necrotic cores. A less explored alternative is engineering bone constructs through a cartilage-mediated approach, resembling the embryological process of endochondral ossification. The remodeling of an intermediary hypertrophic cartilaginous template triggers vascular invasion and bone tissue deposition. Thus, employing this knowledge can be a promising direction for the next generation of bone TE constructs. This review highlights the most recent biomimetic strategies for applying endochondral ossification in bone TE while discussing the plethora of cell types, culture conditions, and biomaterials essential to promote a successful bone regeneration process.
Collapse
|
3
|
Le TM, Vu NB, Huynh PD, Van Pham P. Treatment of Osteochondral Femoral Head Defect by Human Umbilical Cord Mesenchymal Stem Cell Sheet Transplantation: An Experimental Study in Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021:209-223. [PMID: 34739722 DOI: 10.1007/5584_2021_671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Articular cartilage is limited in self-repair following injuries due to avascular, lymphatic, and nerve absence. Recent treatments for cartilage injuries, such as physical therapy, anti-inflammatory medication, chondrocyte implantation, and joint replacement, still have limitations. This study aimed to evaluate the treatment efficacy of human umbilical cord-derived mesenchymal stem cell sheet (UCMSCS) transplantation in rat models of the osteochondral femoral head defect. METHODS Models of osteochondral femoral head defect were produced in rats by drilling in order to reach the femoral bone tissue through the cartilage layer. Then, UCMSCS was implanted in the created cartilage lesion. The treatment efficacy was monitored by X-ray imaging. The cartilage regeneration was evaluated based on the hematoxylin and eosin staining, and proteoglycan accumulation was detected by staining Safranin O and Fast Green. The physiological, weight, or movement activity of rats were recorded during the treatment period. RESULTS UCMSCS transplantation showed positive effects on the cartilage regeneration in osteochondral femoral head defect grade 4 (according to ICRS score/grade). Particularly, after 12 weeks of implantation of UCMSCS, the defect was filled with hyaline cartilage-like cells and accumulated a large density of proteoglycan. The osteochondral defect score significantly increased in the treated rats compared to the untreated rats (11.67 ± 0.6 and 9.67 ± 0.6, respectively) (p < 0.05). The histological score also increased in treated rats compared to untreated rats (21.33 ± 1.53 vs. 18.00 ± 1.00) (p < 0.0001). The accumulation of proteoglycan was higher in treated rats (20.50 ± 2.23) than untreated rats (5.38 ± 0.36) (p < 0.05). There was no change in the physiological activities between treated and untreated rats recorded during the study. CONCLUSION MSCS transplantation could promote regeneration in advanced cartilage injury.
Collapse
Affiliation(s)
- Thuan Minh Le
- Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ngoc Bich Vu
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phat Duc Huynh
- Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Department of Animal Physiology and Biotechnology, Biology Faculty, University of Science Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
4
|
Pham PV, Vu NB. Off-the-shelf mesenchymal stem cells from human umbilical cord tissue can significantly improve symptoms in COVID-19 patients: An analysis of evidential relations. World J Stem Cells 2020; 12:721-730. [PMID: 32952854 PMCID: PMC7477657 DOI: 10.4252/wjsc.v12.i8.721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/21/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19) has affected more than 200 countries worldwide. This disease has hugely affected healthcare systems as well as the economy to an extent never seen before. To date, COVID-19 infection has led to about 165000 deaths in 150 countries. At present, there is no specific drug or efficient treatment for this disease. In this analysis based on evidential relationships of the biological characteristics of MSCs, especially umbilical cord (UC)-derived MSCs as well as the first clinical trial using MSCs for COVID-19 treatment, we discuss the use of UC-MSCs to improve the symptoms of COVID-19 in patients.
Collapse
Affiliation(s)
- Phuc Van Pham
- Stem Cell Institute, University of Science, Ho Chi Minh 08000, Viet Nam
- Vietnam National University, Ho Chi Minh 08000, Viet Nam
| | - Ngoc Bich Vu
- Stem Cell Institute, University of Science, Ho Chi Minh 08000, Viet Nam
- Vietnam National University, Ho Chi Minh 08000, Viet Nam
| |
Collapse
|
5
|
Le Thi Bich P, Nguyen Thi H, Dang Ngo Chau H, Phan Van T, Do Q, Dong Khac H, Le Van D, Nguyen Huy L, Mai Cong K, Ta Ba T, Do Minh T, Vu Bich N, Truong Chau N, Van Pham P. Allogeneic umbilical cord-derived mesenchymal stem cell transplantation for treating chronic obstructive pulmonary disease: a pilot clinical study. Stem Cell Res Ther 2020; 11:60. [PMID: 32054512 PMCID: PMC7020576 DOI: 10.1186/s13287-020-1583-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. COPD results from chronic inflammation of the lungs. Current treatments, including physical and chemical therapies, provide limited results. Stem cells, particularly mesenchymal stem cells (MSCs), are used to treat COPD. Here, we evaluated the safety and efficacy of umbilical cord-derived (UC)-MSCs for treating COPD. Methods Twenty patients were enrolled, 9 at stage C and 11 at stage D per the Global Initiative for Obstructive Lung Disease (GOLD) classification. Patients were infused with 106 cells/kg of expanded allogeneic UC-MSCs. All patients were followed for 6 months after the first infusion. The treatment end-point included a comprehensive safety evaluation, pulmonary function testing (PFT), and quality-of-life indicators including questionnaires, the 6-min walk test (6MWT), and systemic inflammation assessments. All patients completed the full infusion and 6-month follow-up. Results No infusion-related toxicities, deaths, or severe adverse events occurred that were deemed related to UC-MSC administration. The UC-MSC-transplanted patients showed a significantly reduced Modified Medical Research Council score, COPD assessment test, and number of exacerbations. However, the forced expiratory volume in 1 s, C-reactive protein, and 6MWT values were nonsignificantly reduced after treatment (1, 3, and 6 months) compared with those before the treatment. Conclusion Systemic UC-MSC administration appears to be safe in patients with moderate-to-severe COPD, can significantly improve their quality of life, and provides a basis for subsequent cell therapy investigations. Trial registration ISRCTN, ISRCTN70443938. Registered 06 July 2019
Collapse
Affiliation(s)
| | - Ha Nguyen Thi
- Van Hanh General Hospital, Ho Chi Minh City, Viet Nam
| | | | - Tien Phan Van
- Van Hanh General Hospital, Ho Chi Minh City, Viet Nam
| | - Quyet Do
- Vietnam Millitay Academy 103, Ha Noi, Viet Nam
| | | | - Dong Le Van
- Vietnam Millitay Academy 103, Ha Noi, Viet Nam
| | | | | | - Thang Ta Ba
- Vietnam Millitay Academy 103, Ha Noi, Viet Nam
| | | | - Ngoc Vu Bich
- Stem Cell Institute, VNUHCM University of Science, Ho Chi Minh City, Viet Nam
| | - Nhat Truong Chau
- Stem Cell Institute, VNUHCM University of Science, Ho Chi Minh City, Viet Nam
| | - Phuc Van Pham
- Stem Cell Institute, VNUHCM University of Science, Ho Chi Minh City, Viet Nam. .,Laboratory of Stem Cell Research and Application, VNUHCM University of Science, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
6
|
Liau LL, Ruszymah BHI, Ng MH, Law JX. Characteristics and clinical applications of Wharton's jelly-derived mesenchymal stromal cells. Curr Res Transl Med 2019; 68:5-16. [PMID: 31543433 DOI: 10.1016/j.retram.2019.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) are widely used in the clinic because they involve fewer ethical issues and safety concerns compared to other stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). MSCs derived from umbilical cord Wharton's jelly (WJ-MSCs) have excellent proliferative potential and a faster growth rate and can retain their multipotency for more passages in vitro compared to adult MSCs from bone marrow or adipose tissue. WJ-MSCs are used clinically for repairing tissue injuries of the spinal cord, liver and heart with the aim of regenerating tissue. On the other hand, WJ-MSCs are also used clinically to ameliorate immune-mediated diseases based on their ability to modulate immune responses. In the field of tissue engineering, WJ-MSCs capable of differentiating into multiple cell lineages have been used to produce a variety of engineered tissues in vitro that can then be transplanted in vivo. This review discusses the characteristics of WJ-MSCs, the differences between WJ-MSCs and adult MSCs, clinical studies involving WJ-MSCs and future perspectives of WJ-MSC research and clinical applications. To summarize, WJ-MSCs have shown promise in treating a variety of diseases clinically. However, most clinical trials/studies reported thus far are relatively smaller in scale. The collected evidence is insufficient to support the routine use of WJ-MSC therapy in the clinic. Thus, rigorous clinical trials are needed in the future to obtain more information on WJ-MSC therapy safety and efficacy.
Collapse
Affiliation(s)
- L L Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - B H I Ruszymah
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - M H Ng
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - J X Law
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Van Pham P, Nguyen HT, Vu NB. Evolution of Stem Cell Products in Medicine: Future of Off-the-Shelf Products. STEM CELL DRUGS - A NEW GENERATION OF BIOPHARMACEUTICALS 2018. [DOI: 10.1007/978-3-319-99328-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|