1
|
Ahmad I, Singh VP, Gore MM. Detection of Diabetic Retinopathy Using Discrete Wavelet-Based Center-Symmetric Local Binary Pattern and Statistical Features. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:1184-1211. [PMID: 39237836 PMCID: PMC11950458 DOI: 10.1007/s10278-024-01243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Computer-aided diagnosis (CAD) system assists ophthalmologists in early diabetic retinopathy (DR) detection by automating the analysis of retinal images, enabling timely intervention and treatment. This paper introduces a novel CAD system based on the global and multi-resolution analysis of retinal images. As a first step, we enhance the quality of the retinal images by applying a sequence of preprocessing techniques, which include the median filter, contrast limited adaptive histogram equalization (CLAHE), and the unsharp filter. These preprocessing steps effectively eliminate noise and enhance the contrast in the retinal images. Further, these images are represented at multi-scales using discrete wavelet transform (DWT), and center symmetric local binary pattern (CSLBP) features are extracted from each scale. The extracted CSLBP features from decomposed images capture the fine and coarse details of the retinal fundus images. Also, statistical features are extracted to capture the global characteristics and provide a comprehensive representation of retinal fundus images. The detection performances of these features are evaluated on a benchmark dataset using two machine learning models, i.e., SVM and k-NN, and found that the performance of the proposed work is considerably more encouraging than other existing methods. Furthermore, the results demonstrate that when wavelet-based CSLBP features are combined with statistical features, they yield notably improved detection performance compared to using these features individually.
Collapse
Affiliation(s)
- Imtiyaz Ahmad
- Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India.
| | - Vibhav Prakash Singh
- Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Manoj Madhava Gore
- Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| |
Collapse
|
2
|
Amir Hamzah NA, Wan Zaki WMD, Wan Abdul Halim WH, Mustafar R, Saad AH. Evaluating the potential of retinal photography in chronic kidney disease detection: a review. PeerJ 2024; 12:e17786. [PMID: 39104365 PMCID: PMC11299532 DOI: 10.7717/peerj.17786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024] Open
Abstract
Background Chronic kidney disease (CKD) is a significant global health concern, emphasizing the necessity of early detection to facilitate prompt clinical intervention. Leveraging the unique ability of the retina to offer insights into systemic vascular health, it emerges as an interesting, non-invasive option for early CKD detection. Integrating this approach with existing invasive methods could provide a comprehensive understanding of patient health, enhancing diagnostic accuracy and treatment effectiveness. Objectives The purpose of this review is to critically assess the potential of retinal imaging to serve as a diagnostic tool for CKD detection based on retinal vascular changes. The review tracks the evolution from conventional manual evaluations to the latest state-of-the-art in deep learning. Survey Methodology A comprehensive examination of the literature was carried out, using targeted database searches and a three-step methodology for article evaluation: identification, screening, and inclusion based on Prisma guidelines. Priority was given to unique and new research concerning the detection of CKD with retinal imaging. A total of 70 publications from 457 that were initially discovered satisfied our inclusion criteria and were thus subjected to analysis. Out of the 70 studies included, 35 investigated the correlation between diabetic retinopathy and CKD, 23 centered on the detection of CKD via retinal imaging, and four attempted to automate the detection through the combination of artificial intelligence and retinal imaging. Results Significant retinal features such as arteriolar narrowing, venular widening, specific retinopathy markers (like microaneurysms, hemorrhages, and exudates), and changes in arteriovenous ratio (AVR) have shown strong correlations with CKD progression. We also found that the combination of deep learning with retinal imaging for CKD detection could provide a very promising pathway. Accordingly, leveraging retinal imaging through this technique is expected to enhance the precision and prognostic capacity of the CKD detection system, offering a non-invasive diagnostic alternative that could transform patient care practices. Conclusion In summary, retinal imaging holds high potential as a diagnostic tool for CKD because it is non-invasive, facilitates early detection through observable microvascular changes, offers predictive insights into renal health, and, when paired with deep learning algorithms, enhances the accuracy and effectiveness of CKD screening.
Collapse
Affiliation(s)
- Nur Asyiqin Amir Hamzah
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Technology, Multimedia University, Ayer Keroh, Melaka, Malaysia
| | - Wan Mimi Diyana Wan Zaki
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | | | - Ruslinda Mustafar
- Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Assyareefah Hudaibah Saad
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Ma F, Liu X, Wang S, Li S, Dai C, Meng J. CSANet: a lightweight channel and spatial attention neural network for grading diabetic retinopathy with optical coherence tomography angiography. Quant Imaging Med Surg 2024; 14:1820-1834. [PMID: 38415109 PMCID: PMC10895115 DOI: 10.21037/qims-23-1270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 02/29/2024]
Abstract
Background Diabetic retinopathy (DR) is one of the most common eye diseases. Convolutional neural networks (CNNs) have proven to be a powerful tool for learning DR features; however, accurate DR grading remains challenging due to the small lesions in optical coherence tomography angiography (OCTA) images and the small number of samples. Methods In this article, we developed a novel deep-learning framework to achieve the fine-grained classification of DR; that is, the lightweight channel and spatial attention network (CSANet). Our CSANet comprises two modules: the baseline model, and the hybrid attention module (HAM) based on spatial attention and channel attention. The spatial attention module is used to mine small lesions and obtain a set of spatial position weights to address the problem of small lesions being ignored during the convolution process. The channel attention module uses a set of channel weights to focus on useful features and suppress irrelevant features. Results The extensive experimental results for the OCTA-DR and diabetic retinopathy analysis challenge (DRAC) 2022 data sets showed that the CSANet achieved state-of-the-art DR grading results, showing the effectiveness of the proposed model. The CSANet had an accuracy rate of 97.41% for the OCTA-DR data set and 85.71% for the DRAC 2022 data set. Conclusions Extensive experiments using the OCTA-DR and DRAC 2022 data sets showed that the proposed model effectively mitigated the problems of mutual confusion between DRs of different severity and small lesions being neglected in the convolution process, and thus improved the accuracy of DR classification.
Collapse
Affiliation(s)
- Fei Ma
- School of Computer Science, Qufu Normal University, Rizhao, China
| | - Xiao Liu
- School of Computer Science, Qufu Normal University, Rizhao, China
| | - Shengbo Wang
- School of Computer Science, Qufu Normal University, Rizhao, China
| | - Sien Li
- School of Computer Science, Qufu Normal University, Rizhao, China
| | - Cuixia Dai
- College Science, Shanghai Institute of Technology, Shanghai, China
| | - Jing Meng
- School of Computer Science, Qufu Normal University, Rizhao, China
| |
Collapse
|
4
|
Nguyen TD, Le DT, Bum J, Kim S, Song SJ, Choo H. Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images. Diagnostics (Basel) 2024; 14:105. [PMID: 38201414 PMCID: PMC10804390 DOI: 10.3390/diagnostics14010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors in accurately diagnosing diseases and recommending suitable treatments. This study investigated the application of various deep learning models for detecting eye diseases using UFI. We developed an automated system that processes and enhances a dataset of 4697 images. Our approach involves brightness and contrast enhancement, followed by applying feature extraction, data augmentation and image classification, integrated with convolutional neural networks. These networks utilize layer-wise feature extraction and transfer learning from pre-trained models to accurately represent and analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931-0.974). Additionally, the paper presents visualizations of the model's predictions, including confidence scores and heatmaps that highlight the model's focal points-particularly where lesions due to damage are evident. By streamlining the diagnosis process and providing intricate prediction details without human intervention, our system serves as a pivotal tool for ophthalmologists. This research underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with deep learning.
Collapse
Affiliation(s)
- Toan Duc Nguyen
- Department of AI Systems Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Duc-Tai Le
- College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junghyun Bum
- Sungkyun AI Research Institute, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seongho Kim
- Department of Ophthalmology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Su Jeong Song
- Department of Ophthalmology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunseung Choo
- Department of AI Systems Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Tăbăcaru G, Moldovanu S, Răducan E, Barbu M. A Robust Machine Learning Model for Diabetic Retinopathy Classification. J Imaging 2023; 10:8. [PMID: 38248993 PMCID: PMC10816944 DOI: 10.3390/jimaging10010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Ensemble learning is a process that belongs to the artificial intelligence (AI) field. It helps to choose a robust machine learning (ML) model, usually used for data classification. AI has a large connection with image processing and feature classification, and it can also be successfully applied to analyzing fundus eye images. Diabetic retinopathy (DR) is a disease that can cause vision loss and blindness, which, from an imaging point of view, can be shown when screening the eyes. Image processing tools can analyze and extract the features from fundus eye images, and these corroborate with ML classifiers that can perform their classification among different disease classes. The outcomes integrated into automated diagnostic systems can be a real success for physicians and patients. In this study, in the form image processing area, the manipulation of the contrast with the gamma correction parameter was applied because DR affects the blood vessels, and the structure of the eyes becomes disorderly. Therefore, the analysis of the texture with two types of entropies was necessary. Shannon and fuzzy entropies and contrast manipulation led to ten original features used in the classification process. The machine learning library PyCaret performs complex tasks, and the empirical process shows that of the fifteen classifiers, the gradient boosting classifier (GBC) provides the best results. Indeed, the proposed model can classify the DR degrees as normal or severe, achieving an accuracy of 0.929, an F1 score of 0.902, and an area under the curve (AUC) of 0.941. The validation of the selected model with a bootstrap statistical technique was performed. The novelty of the study consists of the extraction of features from preprocessed fundus eye images, their classification, and the manipulation of the contrast in a controlled way.
Collapse
Affiliation(s)
- Gigi Tăbăcaru
- Department of Automatic Control and Electrical Engineering, Faculty of Automation, Computers, Electrical, Engineering and Electronics, “Dunarea de Jos” University of Galati, 800008 Galați, Romania; (G.T.); (E.R.); (M.B.)
| | - Simona Moldovanu
- Computer Science and Information Technology, Faculty of Automation, Computers, Electrical Engineering and Electronics, “Dunarea de Jos” University of Galati, 800210 Galati, Romania
- The Modelling & Simulation Laboratory, Dunarea de Jos University of Galati, 47 Domneasca Str., 800008 Galati, Romania
| | - Elena Răducan
- Department of Automatic Control and Electrical Engineering, Faculty of Automation, Computers, Electrical, Engineering and Electronics, “Dunarea de Jos” University of Galati, 800008 Galați, Romania; (G.T.); (E.R.); (M.B.)
| | - Marian Barbu
- Department of Automatic Control and Electrical Engineering, Faculty of Automation, Computers, Electrical, Engineering and Electronics, “Dunarea de Jos” University of Galati, 800008 Galați, Romania; (G.T.); (E.R.); (M.B.)
| |
Collapse
|
6
|
Rayavel P, Murukesh C. Comparative analysis of deep learning classifiers for diabetic retinopathy identification and detection. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2023.2168851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- P. Rayavel
- Department of Computer Science and Engineering (Cybersecurity), Sri Sairam Institute of Technology, Chennai, Tamil Nadu, India
| | - C. Murukesh
- Department of Electronics and Communication Engineering, Velammal Engineering College, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Susheel Kumar K, Pratap Singh N. Identification of retinal diseases based on retinal blood vessel segmentation using Dagum PDF and feature-based machine learning. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2023.2183319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- K. Susheel Kumar
- Department of Computer science and Engineering, National Institute of Technology, Hamirpur, India
- Department of Computer Science and Engineering, Gandhi Institute of Technology and Management, Bengaluru, India
| | - Nagendra Pratap Singh
- Department of Computer science and Engineering, National Institute of Technology, Hamirpur, India
| |
Collapse
|
8
|
Effective Handling of Missing Values in Datasets for Classification Using Machine Learning Methods. INFORMATION 2023. [DOI: 10.3390/info14020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The existence of missing values reduces the amount of knowledge learned by the machine learning models in the training stage thus affecting the classification accuracy negatively. To address this challenge, we introduce the use of Support Vector Machine (SVM) regression for imputing the missing values. Additionally, we propose a two-level classification process to reduce the number of false classifications. Our evaluation of the proposed method was conducted using the PIMA Indian dataset for diabetes classification. We compared the performance of five different machine learning models: Naive Bayes (NB), Support Vector Machine (SVM), k-Nearest Neighbours (KNN), Random Forest (RF), and Linear Regression (LR). The results of our experiments show that the SVM classifier achieved the highest accuracy of 94.89%. The RF classifier had the highest precision (98.80%) and the SVM classifier had the highest recall (85.48%). The NB model had the highest F1-Score (95.59%). Our proposed method provides a promising solution for detecting diabetes at an early stage by addressing the issue of missing values in the dataset. Our results show that the use of SVM regression and a two-level classification process can notably improve the performance of machine learning models for diabetes classification. This work provides a valuable contribution to the field of diabetes research and highlights the importance of addressing missing values in machine learning applications.
Collapse
|
9
|
Wang C, Zhang Y, Xu S, Liu Y, Xie L, Wu C, Yang Q, Chu Y, Ye Q. Research on Assistant Diagnosis of Fundus Optic Neuropathy Based on Deep Learning. Curr Eye Res 2023; 48:51-59. [PMID: 36264060 DOI: 10.1080/02713683.2022.2138917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The purpose of this study was to use the neural network to distinguish optic edema (ODE), and optic atrophy from normal fundus images and try to use visualization to explain the artificial intelligence methods. METHODS Three hundred and sixty-seven images of ODE, 206 images of optic atrophy, and 231 images of normal fundus were used, which were provided by two hospitals. A set of image preprocessing and data enhancement methods were created and a variety of different neural network models, such as VGG16, VGG19, Inception V3, and 50-layer Deep Residual Learning (ResNet50) were used. The accuracy, recall, F1-score, and ROC curve under different networks were analyzed to evaluate the performance of models. Besides, CAM (class activation mapping) was utilized to find the focus of neural network and visualization of neural network with feature fusion. RESULTS Our image preprocessing and data enhancement method significantly improved the accuracy of model performance by about 10%. Among the networks, VGG16 had the best effect, as the accuracy of ODE, optic atrophy and normal fundus were 98, 90, and 95%, respectively. The macro-average and micro-average of VGG16 both reached 0.98. From CAM we can clearly find out that the focus area of the network is near the optic cup. From feature fusion images, we can find out the difference between the three types fundus images. CONCLUSION Through image preprocessing, data enhancement, and neural network training, we applied artificial intelligence to identify ophthalmic diseases, acquired the focus area through CAM, and identified the difference between the three ophthalmic diseases through neural network middle layers visualization. With the help of assistant diagnosis, ophthalmologists can evaluate cases more precisely and more clearly.
Collapse
Affiliation(s)
- Chengjin Wang
- Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics and TEDA Applied Physics, Ministry of Education, Nankai University, Tianjin, China
| | - Yuwei Zhang
- Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics and TEDA Applied Physics, Ministry of Education, Nankai University, Tianjin, China
| | - Shuai Xu
- Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics and TEDA Applied Physics, Ministry of Education, Nankai University, Tianjin, China
| | - Yuyan Liu
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital and Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
| | - Lindan Xie
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital and Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
| | - Changlong Wu
- Ophthalmology, Jinan Second People's Hospital, Jinan City, Shandong Province, China
| | - Qianhui Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yanhua Chu
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital and Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics and TEDA Applied Physics, Ministry of Education, Nankai University, Tianjin, China.,Nankai University Eye Institute, Nankai University Afflicted Eye Hospital, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Kusakunniran W, Karnjanapreechakorn S, Choopong P, Siriapisith T, Tesavibul N, Phasukkijwatana N, Prakhunhungsit S, Boonsopon S. Detecting and staging diabetic retinopathy in retinal images using multi-branch CNN. APPLIED COMPUTING AND INFORMATICS 2022. [DOI: 10.1108/aci-06-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PurposeThis paper aims to propose a solution for detecting and grading diabetic retinopathy (DR) in retinal images using a convolutional neural network (CNN)-based approach. It could classify input retinal images into a normal class or an abnormal class, which would be further split into four stages of abnormalities automatically.Design/methodology/approachThe proposed solution is developed based on a newly proposed CNN architecture, namely, DeepRoot. It consists of one main branch, which is connected by two side branches. The main branch is responsible for the primary feature extractor of both high-level and low-level features of retinal images. Then, the side branches further extract more complex and detailed features from the features outputted from the main branch. They are designed to capture details of small traces of DR in retinal images, using modified zoom-in/zoom-out and attention layers.FindingsThe proposed method is trained, validated and tested on the Kaggle dataset. The regularization of the trained model is evaluated using unseen data samples, which were self-collected from a real scenario from a hospital. It achieves a promising performance with a sensitivity of 98.18% under the two classes scenario.Originality/valueThe new CNN-based architecture (i.e. DeepRoot) is introduced with the concept of a multi-branch network. It could assist in solving a problem of an unbalanced dataset, especially when there are common characteristics across different classes (i.e. four stages of DR). Different classes could be outputted at different depths of the network.
Collapse
|
11
|
Mohan R, Kadry S, Rajinikanth V, Majumdar A, Thinnukool O. Automatic Detection of Tuberculosis Using VGG19 with Seagull-Algorithm. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111848. [PMID: 36430983 PMCID: PMC9692667 DOI: 10.3390/life12111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Due to various reasons, the incidence rate of communicable diseases in humans is steadily rising, and timely detection and handling will reduce the disease distribution speed. Tuberculosis (TB) is a severe communicable illness caused by the bacterium Mycobacterium-Tuberculosis (M. tuberculosis), which predominantly affects the lungs and causes severe respiratory problems. Due to its significance, several clinical level detections of TB are suggested, including lung diagnosis with chest X-ray images. The proposed work aims to develop an automatic TB detection system to assist the pulmonologist in confirming the severity of the disease, decision-making, and treatment execution. The proposed system employs a pre-trained VGG19 with the following phases: (i) image pre-processing, (ii) mining of deep features, (iii) enhancing the X-ray images with chosen procedures and mining of the handcrafted features, (iv) feature optimization using Seagull-Algorithm and serial concatenation, and (v) binary classification and validation. The classification is executed with 10-fold cross-validation in this work, and the proposed work is investigated using MATLAB® software. The proposed research work was executed using the concatenated deep and handcrafted features, which provided a classification accuracy of 98.6190% with the SVM-Medium Gaussian (SVM-MG) classifier.
Collapse
Affiliation(s)
- Ramya Mohan
- Department of Computer Science and Engineering, Division of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman 346, United Arab Emirates
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos 1401, Lebanon
| | - Venkatesan Rajinikanth
- Department of Computer Science and Engineering, Division of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Arnab Majumdar
- Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Orawit Thinnukool
- Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
- College of Arts, Media, and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
12
|
Tuberculosis Detection in Chest Radiographs Using Spotted Hyena Algorithm Optimized Deep and Handcrafted Features. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9263379. [PMID: 36248926 PMCID: PMC9560840 DOI: 10.1155/2022/9263379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
Lung abnormality in humans is steadily increasing due to various causes, and early recognition and treatment are extensively suggested. Tuberculosis (TB) is one of the lung diseases, and due to its occurrence rate and harshness, the World Health Organization (WHO) lists TB among the top ten diseases which lead to death. The clinical level detection of TB is usually performed using bio-medical imaging methods, and a chest X-ray is a commonly adopted imaging modality. This work aims to develop an automated procedure to detect TB from X-ray images using VGG-UNet-supported joint segmentation and classification. The various phases of the proposed scheme involved; (i) image collection and resizing, (ii) deep-features mining, (iii) segmentation of lung section, (iv) local-binary-pattern (LBP) generation and feature extraction, (v) optimal feature selection using spotted hyena algorithm (SHA), (vi) serial feature concatenation, and (vii) classification and validation. This research considered 3000 test images (1500 healthy and 1500 TB class) for the assessment, and the proposed experiment is implemented using Matlab®. This work implements the pretrained models to detect TB in X-rays with improved accuracy, and this research helped achieve a classification accuracy of >99% with a fine-tree classifier.
Collapse
|
13
|
Classification of diabetic retinopathy with feature selection over deep features using nature-inspired wrapper methods. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Dubey S, Dixit M. Recent developments on computer aided systems for diagnosis of diabetic retinopathy: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:14471-14525. [PMID: 36185322 PMCID: PMC9510498 DOI: 10.1007/s11042-022-13841-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a long-term condition in which the pancreas quits producing insulin or the body's insulin isn't utilised properly. One of the signs of diabetes is Diabetic Retinopathy. Diabetic retinopathy is the most prevalent type of diabetes, if remains unaddressed, diabetic retinopathy can affect all diabetics and become very serious, raising the chances of blindness. It is a chronic systemic condition that affects up to 80% of patients for more than ten years. Many researchers believe that if diabetes individuals are diagnosed early enough, they can be rescued from the condition in 90% of cases. Diabetes damages the capillaries, which are microscopic blood vessels in the retina. On images, blood vessel damage is usually noticeable. Therefore, in this study, several traditional, as well as deep learning-based approaches, are reviewed for the classification and detection of this particular diabetic-based eye disease known as diabetic retinopathy, and also the advantage of one approach over the other is also described. Along with the approaches, the dataset and the evaluation metrics useful for DR detection and classification are also discussed. The main finding of this study is to aware researchers about the different challenges occurs while detecting diabetic retinopathy using computer vision, deep learning techniques. Therefore, a purpose of this review paper is to sum up all the major aspects while detecting DR like lesion identification, classification and segmentation, security attacks on the deep learning models, proper categorization of datasets and evaluation metrics. As deep learning models are quite expensive and more prone to security attacks thus, in future it is advisable to develop a refined, reliable and robust model which overcomes all these aspects which are commonly found while designing deep learning models.
Collapse
Affiliation(s)
- Shradha Dubey
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| | - Manish Dixit
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| |
Collapse
|
15
|
El-Ateif S, Idri A. Single-modality and joint fusion deep learning for diabetic retinopathy diagnosis. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
16
|
Jena M, Mishra D, Mishra SP, Mallick PK. A Tailored Complex Medical Decision Analysis Model for Diabetic Retinopathy Classification Based on Optimized Un-Supervised Feature Learning Approach. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Comput Biol Med 2022; 146:105602. [DOI: 10.1016/j.compbiomed.2022.105602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 01/02/2023]
|
18
|
Dayana AM, Emmanuel WRS. Deep learning enabled optimized feature selection and classification for grading diabetic retinopathy severity in the fundus image. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Latha D, Bell TB, Sheela CJJ. Red lesion in fundus image with hexagonal pattern feature and two-level segmentation. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:26143-26161. [PMID: 35368859 PMCID: PMC8959564 DOI: 10.1007/s11042-022-12667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Red lesion identification at its early stage is very essential for the treatment of diabetic retinopathy to prevent loss of vision. This work proposes a red lesion detection algorithm that uses Hexagonal pattern-based features with two-level segmentation that can detect hemorrhage and microaneurysms in the fundus image. The proposed scheme initially pre-processes the fundus image followed by a two-level segmentation. The level 1 segmentation eliminates the background whereas the level 2 segmentation eliminates the blood vessels that introduce more false positives. A hexagonal pattern-based feature is extracted from the red lesion candidates which can highly differentiate the lesion from non-lesion regions. The hexagonal pattern features are then trained using the recurrent neural network and are classified to eliminate the false negatives. For the evaluation of the proposed red lesion algorithm, the datasets namely ROC challenge, e-ophtha, DiaretDB1, and Messidor are used with the metrics such as Accuracy, Recall, Precision, F1 score, Specificity, and AUC. The scheme provides an average Accuracy, Recall (Sensitivity), Precision, F1 score, Specificity, and AUC of 95.48%, 84.54%, 97.3%, 90.47%, 86.81% and 93.43% respectively.
Collapse
Affiliation(s)
- D. Latha
- Department of PG Computer Science, Nesamony Memorial Christian College, Marthandam, India
| | - T. Beula Bell
- Department of Computer Applications, Nesamony Memorial Christian College, Marthandam, India
| | - C. Jaspin Jeba Sheela
- Department of PG Computer Science, Nesamony Memorial Christian College, Marthandam, India
| |
Collapse
|
20
|
|
21
|
Toğaçar M. Detection of retinopathy disease using morphological gradient and segmentation approaches in fundus images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106579. [PMID: 34896689 DOI: 10.1016/j.cmpb.2021.106579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Diabetes-related cases can cause glaucoma, cataracts, optic neuritis, paralysis of the eye muscles, or various retinal damages over time. Diabetic retinopathy is the most common form of blindness that occurs with diabetes. Diabetic retinopathy is a disease that occurs when the blood vessels in the retina of the eye become damaged, leading to loss of vision in advanced stages. This disease can occur in any diabetic patient, and the most important factor in treating the disease is early diagnosis. Nowadays, deep learning models and machine learning methods, which are open to technological developments, are already used in early diagnosis systems. In this study, two publicly available datasets were used. The datasets consist of five types according to the severity of diabetic retinopathy. The objectives of the proposed approach in diabetic retinopathy detection are to positively contribute to the performance of CNN models by processing fundus images through preprocessing steps (morphological gradient and segmentation approaches). The other goal is to detect efficient sets from type-based activation sets obtained from CNN models using Atom Search Optimization method and increase the classification success. METHODS The proposed approach consists of three steps. In the first step, the Morphological Gradient method is used to prevent parasitism in each image, and the ocular vessels in fundus images are extracted using the segmentation method. In the second step, the datasets are trained with transfer learning models and the activations for each class type in the last fully connected layers of these models are extracted. In the last step, the Atom Search optimization method is used, and the most dominant activation class is selected from the extracted activations on a class basis. RESULTS When classified by the severity of diabetic retinopathy, an overall accuracy of 99.59% was achieved for dataset #1 and 99.81% for dataset #2. CONCLUSIONS In this study, it was found that the overall accuracy achieved with the proposed approach increased. To achieve this increase, the application of preprocessing steps and the selection of the dominant activation sets from the deep learning models were implemented using the Atom Search optimization method.
Collapse
Affiliation(s)
- Mesut Toğaçar
- Computer Technologies Department, Technical Sciences Vocational School, Fırat University, Elazığ, Turkey.
| |
Collapse
|
22
|
Khan MA, Alhaisoni M, Tariq U, Hussain N, Majid A, Damaševičius R, Maskeliūnas R. COVID-19 Case Recognition from Chest CT Images by Deep Learning, Entropy-Controlled Firefly Optimization, and Parallel Feature Fusion. SENSORS (BASEL, SWITZERLAND) 2021; 21:7286. [PMID: 34770595 PMCID: PMC8588229 DOI: 10.3390/s21217286] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
In healthcare, a multitude of data is collected from medical sensors and devices, such as X-ray machines, magnetic resonance imaging, computed tomography (CT), and so on, that can be analyzed by artificial intelligence methods for early diagnosis of diseases. Recently, the outbreak of the COVID-19 disease caused many deaths. Computer vision researchers support medical doctors by employing deep learning techniques on medical images to diagnose COVID-19 patients. Various methods were proposed for COVID-19 case classification. A new automated technique is proposed using parallel fusion and optimization of deep learning models. The proposed technique starts with a contrast enhancement using a combination of top-hat and Wiener filters. Two pre-trained deep learning models (AlexNet and VGG16) are employed and fine-tuned according to target classes (COVID-19 and healthy). Features are extracted and fused using a parallel fusion approach-parallel positive correlation. Optimal features are selected using the entropy-controlled firefly optimization method. The selected features are classified using machine learning classifiers such as multiclass support vector machine (MC-SVM). Experiments were carried out using the Radiopaedia database and achieved an accuracy of 98%. Moreover, a detailed analysis is conducted and shows the improved performance of the proposed scheme.
Collapse
Affiliation(s)
- Muhammad Attique Khan
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan; (M.A.K.); (N.H.); (A.M.)
| | - Majed Alhaisoni
- College of Computer Science and Engineering, University of Ha’il, Ha’il 55211, Saudi Arabia;
| | - Usman Tariq
- Information Systems Department, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al Khraj 11942, Saudi Arabia;
| | - Nazar Hussain
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan; (M.A.K.); (N.H.); (A.M.)
| | - Abdul Majid
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan; (M.A.K.); (N.H.); (A.M.)
| | - Robertas Damaševičius
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Rytis Maskeliūnas
- Department of Multimedia Engineering, Kaunas University of Technology, 51368 Kaunas, Lithuania;
| |
Collapse
|
23
|
Accurate Diagnosis of Diabetic Retinopathy and Glaucoma Using Retinal Fundus Images Based on Hybrid Features and Genetic Algorithm. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Diabetic retinopathy (DR) and glaucoma can both be incurable if they are not detected early enough. Therefore, ophthalmologists worldwide are striving to detect them by personally screening retinal fundus images. However, this procedure is not only tedious, subjective, and labor-intensive, but also error-prone. Worse yet, it may not even be attainable in some countries where ophthalmologists are in short supply. A practical solution to this complicated problem is a computer-aided diagnosis (CAD) system—the objective of this work. We propose an accurate system to detect at once any of the two diseases from retinal fundus images. The accuracy stems from two factors. First, we calculate a large set of hybrid features belonging to three groups: first-order statistics (FOS), higher-order statistics (HOS), and histogram of oriented gradient (HOG). Then, these features are skillfully reduced using a genetic algorithm scheme that selects only the most relevant and significant of them. Finally, the selected features are fed to a classifier to detect one of three classes: DR, glaucoma, or normal. Four classifiers are tested for this job: decision tree (DT), naive Bayes (NB), k-nearest neighbor (kNN), and linear discriminant analysis (LDA). The experimental work, conducted on three publicly available datasets, two of them merged into one, shows impressive performance in terms of four standard classification metrics, each computed using k-fold crossvalidation for added credibility. The highest accuracy has been provided by DT—96.67% for DR, 100% for glaucoma, and 96.67% for normal.
Collapse
|
24
|
Multi-Scale Feature Fusion with Adaptive Weighting for Diabetic Retinopathy Severity Classification. ELECTRONICS 2021. [DOI: 10.3390/electronics10121369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diabetic retinopathy (DR) is the prime cause of blindness in people who suffer from diabetes. Automation of DR diagnosis could help a lot of patients avoid the risk of blindness by identifying the disease and making judgments at an early stage. The main focus of the present work is to propose a feasible scheme of DR severity level detection under the MobileNetV3 backbone network based on a multi-scale feature of the retinal fundus image and improve the classification performance of the model. Firstly, a special residual attention module RCAM for multi-scale feature extraction from different convolution layers was designed. Then, the feature fusion by an innovative operation of adaptive weighting was carried out in each layer. The corresponding weight of the convolution block is updated in the model training automatically, with further global average pooling (GAP) and division process to avoid over-fitting of the model and removing non-critical features. In addition, Focal Loss is used as a loss function due to the data imbalance of DR images. The experimental results based on Kaggle APTOS 2019 contest dataset show that our proposed method for DR severity classification achieves an accuracy of 85.32%, a kappa statistic of 77.26%, and an AUC of 0.97. The comparison results also indicate that the model obtained is superior to the existing models and presents superior classification performance on the dataset.
Collapse
|
25
|
Lal S, Rehman SU, Shah JH, Meraj T, Rauf HT, Damaševičius R, Mohammed MA, Abdulkareem KH. Adversarial Attack and Defence through Adversarial Training and Feature Fusion for Diabetic Retinopathy Recognition. SENSORS (BASEL, SWITZERLAND) 2021; 21:3922. [PMID: 34200216 PMCID: PMC8201392 DOI: 10.3390/s21113922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Due to the rapid growth in artificial intelligence (AI) and deep learning (DL) approaches, the security and robustness of the deployed algorithms need to be guaranteed. The security susceptibility of the DL algorithms to adversarial examples has been widely acknowledged. The artificially created examples will lead to different instances negatively identified by the DL models that are humanly considered benign. Practical application in actual physical scenarios with adversarial threats shows their features. Thus, adversarial attacks and defense, including machine learning and its reliability, have drawn growing interest and, in recent years, has been a hot topic of research. We introduce a framework that provides a defensive model against the adversarial speckle-noise attack, the adversarial training, and a feature fusion strategy, which preserves the classification with correct labelling. We evaluate and analyze the adversarial attacks and defenses on the retinal fundus images for the Diabetic Retinopathy recognition problem, which is considered a state-of-the-art endeavor. Results obtained on the retinal fundus images, which are prone to adversarial attacks, are 99% accurate and prove that the proposed defensive model is robust.
Collapse
Affiliation(s)
- Sheeba Lal
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan; (S.L.); (S.U.R.); (J.H.S.); (T.M.)
| | - Saeed Ur Rehman
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan; (S.L.); (S.U.R.); (J.H.S.); (T.M.)
| | - Jamal Hussain Shah
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan; (S.L.); (S.U.R.); (J.H.S.); (T.M.)
| | - Talha Meraj
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan; (S.L.); (S.U.R.); (J.H.S.); (T.M.)
| | - Hafiz Tayyab Rauf
- Department of Computer Science, Faculty of Engineering & Informatics, University of Bradford, Bradford BD7 1DP, UK
| | - Robertas Damaševičius
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Mazin Abed Mohammed
- College of Computer Science and Information Technology, University of Anbar, Anbar 31001, Iraq;
| | | |
Collapse
|
26
|
Hemorrhage Detection Based on 3D CNN Deep Learning Framework and Feature Fusion for Evaluating Retinal Abnormality in Diabetic Patients. SENSORS 2021; 21:s21113865. [PMID: 34205120 PMCID: PMC8199947 DOI: 10.3390/s21113865] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023]
Abstract
Diabetic retinopathy (DR) is the main cause of blindness in diabetic patients. Early and accurate diagnosis can improve the analysis and prognosis of the disease. One of the earliest symptoms of DR are the hemorrhages in the retina. Therefore, we propose a new method for accurate hemorrhage detection from the retinal fundus images. First, the proposed method uses the modified contrast enhancement method to improve the edge details from the input retinal fundus images. In the second stage, a new convolutional neural network (CNN) architecture is proposed to detect hemorrhages. A modified pre-trained CNN model is used to extract features from the detected hemorrhages. In the third stage, all extracted feature vectors are fused using the convolutional sparse image decomposition method, and finally, the best features are selected by using the multi-logistic regression controlled entropy variance approach. The proposed method is evaluated on 1509 images from HRF, DRIVE, STARE, MESSIDOR, DIARETDB0, and DIARETDB1 databases and achieves the average accuracy of 97.71%, which is superior to the previous works. Moreover, the proposed hemorrhage detection system attains better performance, in terms of visual quality and quantitative analysis with high accuracy, in comparison with the state-of-the-art methods.
Collapse
|