1
|
Niu Y, Xiang J, Gao K, Wu J, Sun J, Wang B, Ding R, Dou M, Wen X, Cui X, Zhou M. Multi-Frequency Entropy for Quantifying Complex Dynamics and Its Application on EEG Data. ENTROPY (BASEL, SWITZERLAND) 2024; 26:728. [PMID: 39330063 PMCID: PMC11431093 DOI: 10.3390/e26090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Multivariate entropy algorithms have proven effective in the complexity dynamic analysis of electroencephalography (EEG) signals, with researchers commonly configuring the variables as multi-channel time series. However, the complex quantification of brain dynamics from a multi-frequency perspective has not been extensively explored, despite existing evidence suggesting interactions among brain rhythms at different frequencies. In this study, we proposed a novel algorithm, termed multi-frequency entropy (mFreEn), enhancing the capabilities of existing multivariate entropy algorithms and facilitating the complexity study of interactions among brain rhythms of different frequency bands. Firstly, utilizing simulated data, we evaluated the mFreEn's sensitivity to various noise signals, frequencies, and amplitudes, investigated the effects of parameters such as the embedding dimension and data length, and analyzed its anti-noise performance. The results indicated that mFreEn demonstrated enhanced sensitivity and reduced parameter dependence compared to traditional multivariate entropy algorithms. Subsequently, the mFreEn algorithm was applied to the analysis of real EEG data. We found that mFreEn exhibited a good diagnostic performance in analyzing resting-state EEG data from various brain disorders. Furthermore, mFreEn showed a good classification performance for EEG activity induced by diverse task stimuli. Consequently, mFreEn provides another important perspective to quantify complex dynamics.
Collapse
Affiliation(s)
- Yan Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Kai Gao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Jie Sun
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Runan Ding
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Mingliang Dou
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Xin Wen
- School of Software, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Xiaohong Cui
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (Y.N.); (J.X.); (K.G.); (J.S.); (B.W.); (R.D.); (M.D.); (X.C.)
| | - Mengni Zhou
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
2
|
Ren Z, Han X, Wang B. The performance evaluation of the state-of-the-art EEG-based seizure prediction models. Front Neurol 2022; 13:1016224. [PMID: 36504642 PMCID: PMC9732735 DOI: 10.3389/fneur.2022.1016224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The recurrent and unpredictable nature of seizures can lead to unintentional injuries and even death. The rapid development of electroencephalogram (EEG) and Artificial Intelligence (AI) technologies has made it possible to predict seizures in real-time through brain-machine interfaces (BCI), allowing advanced intervention. To date, there is still much room for improvement in predictive seizure models constructed by EEG using machine learning (ML) and deep learning (DL). But, the most critical issue is how to improve the performance and generalization of the model, which involves some confusing conceptual and methodological issues. This review focuses on analyzing several factors affecting the performance of seizure prediction models, focusing on the aspects of post-processing, seizure occurrence period (SOP), seizure prediction horizon (SPH), and algorithms. Furthermore, this study presents some new directions and suggestions for building high-performance prediction models in the future. We aimed to clarify the concept for future research in related fields and improve the performance of prediction models to provide a theoretical basis for future applications of wearable seizure detection devices.
Collapse
Affiliation(s)
- Zhe Ren
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiong Han
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China,*Correspondence: Xiong Han
| | - Bin Wang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Aung ST, Hassan M, Brady M, Mannan ZI, Azam S, Karim A, Zaman S, Wongsawat Y. Entropy-Based Emotion Recognition from Multichannel EEG Signals Using Artificial Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6000989. [PMID: 36275950 PMCID: PMC9584707 DOI: 10.1155/2022/6000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Humans experience a variety of emotions throughout the course of their daily lives, including happiness, sadness, and rage. As a result, an effective emotion identification system is essential for electroencephalography (EEG) data to accurately reflect emotion in real-time. Although recent studies on this problem can provide acceptable performance measures, it is still not adequate for the implementation of a complete emotion recognition system. In this research work, we propose a new approach for an emotion recognition system, using multichannel EEG calculation with our developed entropy known as multivariate multiscale modified-distribution entropy (MM-mDistEn) which is combined with a model based on an artificial neural network (ANN) to attain a better outcome over existing methods. The proposed system has been tested with two different datasets and achieved better accuracy than existing methods. For the GAMEEMO dataset, we achieved an average accuracy ± standard deviation of 95.73% ± 0.67 for valence and 96.78% ± 0.25 for arousal. Moreover, the average accuracy percentage for the DEAP dataset reached 92.57% ± 1.51 in valence and 80.23% ± 1.83 in arousal.
Collapse
Affiliation(s)
- Si Thu Aung
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Salaya, Thailand
| | - Mehedi Hassan
- Computer Science and Engineering, North Western University, Khulna, Bangladesh
| | - Mark Brady
- Asia Pacific College of Business and Law, Charles Darwin University, Casuarina, NT, Australia
| | - Zubaer Ibna Mannan
- Department of Smart Computing, Kyungdong University, Global Campus, Goseong-Gun, Republic of Korea
| | - Sami Azam
- College of Engineering IT and Environment, Charles Darwin University, Casuarina, NT, Australia
| | - Asif Karim
- College of Engineering IT and Environment, Charles Darwin University, Casuarina, NT, Australia
| | - Sadika Zaman
- Computer Science and Engineering, North Western University, Khulna, Bangladesh
| | - Yodchanan Wongsawat
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Salaya, Thailand
| |
Collapse
|
4
|
Kerezoudis P, Kokkinos V. Commentary: Interictal High Gamma Oscillation Regularity as a Marker for Presurgical Epileptogenic Zone Localization. Oper Neurosurg (Hagerstown) 2022; 23:e114-e116. [PMID: 35838462 DOI: 10.1227/ons.0000000000000254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Seizure Prediction Based on Transformer Using Scalp Electroencephalogram. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epilepsy is a chronic and recurrent brain dysfunction disease. An acute epileptic attack will interfere with a patient’s normal behavior and consciousness, having a great impact on their life. The purpose of this study was to design a seizure prediction model to improve the quality of patients’ lives and assist doctors in making diagnostic decisions. This paper presents a transformer-based seizure prediction model. Firstly, the time-frequency characteristics of electroencephalogram (EEG) signals were extracted by short-time Fourier transform (STFT). Secondly, a three transformer tower model was used to fuse and classify the features of the EEG signals. Finally, when combined with the attention mechanism of transformer networks, the EEG signal was processed as a whole, which solves the problem of length limitations in deep learning models. Experiments were conducted with a Children’s Hospital Boston and the Massachusetts Institute of Technology database to evaluate the performance of the model. The experimental results show that, compared with previous EEG classification models, our model can enhance the ability to use time, frequency, and channel information from EEG signals to improve the accuracy of seizure prediction.
Collapse
|
6
|
Bosl WJ, Loddenkemper T, Vieluf S. Coarse-graining and the Haar wavelet transform for multiscale analysis. Bioelectron Med 2022; 8:3. [PMID: 35105373 PMCID: PMC8809023 DOI: 10.1186/s42234-022-00085-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiscale entropy (MSE) has become increasingly common as a quantitative tool for analysis of physiological signals. The MSE computation involves first decomposing a signal into multiple sub-signal 'scales' using a coarse-graining algorithm. METHODS The coarse-graining algorithm averages adjacent values in a time series to produce a coarser scale time series. The Haar wavelet transform convolutes a time series with a scaled square wave function to produce an approximation which is equivalent to averaging points. RESULTS Coarse-graining is mathematically identical to the Haar wavelet transform approximations. Thus, multiscale entropy is entropy computed on sub-signals derived from approximations of the Haar wavelet transform. By describing coarse-graining algorithms properly as Haar wavelet transforms, the meaning of 'scales' as wavelet approximations becomes transparent. The computed value of entropy is different with different wavelet basis functions, suggesting further research is needed to determine optimal methods for computing multiscale entropy. CONCLUSION Coarse-graining is mathematically identical to Haar wavelet approximations at power-of-two scales. Referring to coarse-graining as a Haar wavelet transform motivates research into the optimal approach to signal decomposition for entropy analysis.
Collapse
Affiliation(s)
- William J Bosl
- University of San Francisco, 2130 Fulton Street, San Francisco, CA, 94117, USA.
- Department of Pediatrics, Harvard Medical School, Boston, USA.
- Computational Health Informatics Program, Boston Children's Hospital, Boston, USA.
| | - Tobias Loddenkemper
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Solveig Vieluf
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Sports Medicine, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
7
|
Xiao H, Mandic DP. Variational Embedding Multiscale Sample Entropy: A Tool for Complexity Analysis of Multichannel Systems. ENTROPY 2021; 24:e24010026. [PMID: 35052052 PMCID: PMC8774490 DOI: 10.3390/e24010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
Entropy-based methods have received considerable attention in the quantification of structural complexity of real-world systems. Among numerous empirical entropy algorithms, conditional entropy-based methods such as sample entropy, which are associated with amplitude distance calculation, are quite intuitive to interpret but require excessive data lengths for meaningful evaluation at large scales. To address this issue, we propose the variational embedding multiscale sample entropy (veMSE) method and conclusively demonstrate its ability to operate robustly, even with several times shorter data than the existing conditional entropy-based methods. The analysis reveals that veMSE also exhibits other desirable properties, such as the robustness to the variation in embedding dimension and noise resilience. For rigor, unlike the existing multivariate methods, the proposed veMSE assigns a different embedding dimension to every data channel, which makes its operation independent of channel permutation. The veMSE is tested on both stimulated and real world signals, and its performance is evaluated against the existing multivariate multiscale sample entropy methods. The proposed veMSE is also shown to exhibit computational advantages over the existing amplitude distance-based entropy methods.
Collapse
|