1
|
Vasu M, Ahlawat S, Arora R, Sharma R. Deciphering the molecular drivers for cashmere/pashmina fiber production in goats: a comprehensive review. Mamm Genome 2025; 36:162-182. [PMID: 39904908 DOI: 10.1007/s00335-025-10109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Cashmere, also known as pashmina, is derived from the secondary hair follicles of Cashmere/Changthangi goats. Renowned as the world's most luxurious natural fiber, it holds significant economic value in the textile industry. This comprehensive review enhances our understanding of the complex biological processes governing cashmere/pashmina fiber development and quality, enabling advancements in selective breeding and fiber enhancement strategies. The review specifically examines the molecular determinants influencing fiber development, with an emphasis on keratins (KRTs) and keratin-associated proteins (KRTAPs). It also explores the roles of key molecular pathways, including Wnt, Notch, BMP, NF-kappa B, VEGF, cAMP, PI3K-Akt, ECM, cell adhesion, Hedgehog, MAPK, Ras, JAK-STAT, TGF-β, mTOR, melanogenesis, FoxO, Hippo, and Rap1 signaling. Understanding these intricate molecular cascades provides valuable insights into the mechanisms orchestrating hair follicle growth, further advancing the biology of this coveted natural fiber. Expanding multi-omics approaches will enhance breeding precision and deepen our understanding of molecular pathways influencing cashmere production. Future research should address critical gaps, such as the impact of environmental factors, epigenetic modifications, and functional studies of genetic variants. Collaboration among breeders, researchers, and policymakers is essential for translating genomic advancements into practical applications. Such efforts can promote sustainable practices, conserve biodiversity, and ensure the long-term viability of high-quality cashmere production. Aligning genetic insights with conservation strategies will support the sustainable growth of the cashmere industry while preserving its economic and ecological value.
Collapse
Affiliation(s)
- Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
2
|
Li S, Kong L, Li S, Liu Y, Pan Y, Liu Q, Hong W, Ma H, Yuan Q, Duan R, Zhan Q, Wang Z. Correlation and regression analysis of FA2H and ELOVL3 functional genes for cashmere fineness with production performance in Liaoning cashmere goat. J Genet Eng Biotechnol 2024; 22:100430. [PMID: 39674643 PMCID: PMC11533662 DOI: 10.1016/j.jgeb.2024.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 12/16/2024]
Abstract
Liaoning cashmere goat (LCG) is characterized by the highest individual cashmere yield, but its cashmere fineness tends to be coarse. Therefore, our research primarily focuses on reducing cashmere fineness. Through lipidomics screening and identification, we identified the crucial functional genes FA2H and ELOVL3 associated with cashmere fineness. Subsequently, using PCR-seq, we conducted gene typing and SNP analysis on the experimental population DNA, In the FA2H gene, a SNP locus T42443G was detected in LCG buck, with the TT genotype showing advantageous traits in cashmere fineness, meat quality, and body size, while the TG genotype demonstrated advantages in slaughter performance,In LCG doe, the TG genotype shows advantageous traits in cashmere fineness, milk production, and meat quality, while the TT genotype exhibits advantages in slaughter performance, lambing, and body size. In the ELOVL3 gene, a SNP locus C2133A was identified in LCG buck, where the CC genotype was advantageous for cashmere fineness, Only CA genotype was found in slaughter and meat quality. Additionally, and the CA genotype showed superiority in body size. On LCG doe, The CC genotype was the advantageous genotype in terms of cashmere fineness, milk production, slaughter performance, and meat quality. The CA genotype was the advantageous genotype in terms of lambing and body size. The dominant genotypes identified to influence both doe cashmere fineness and slaughter performance were TT and CC. The identified dominant haplotype combination for cashmere production performance in LCG was CCTG. The dominant haplotype combination for doe slaughter performance was the CCTT haplotype combination. The dominant haplotype combination for buck slaughter performance was the CATG haplotype combination. Therefore, the TT genotype of the FA2H gene and the CC genotype of the ELOVL3 gene in LCG buck, and the TG genotype of the FA2H gene and the CC genotype of the ELOVL3 gene in doe can be used as molecular markers for assisted selection of cashmere fineness. CCTG haplotype combination was the superior haplotype combinations for cashmere production performance. To provide a theoretical basis for the breeding and expansion of fine-fiber type new strains of LCG.
Collapse
Affiliation(s)
- Shuaitong Li
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Lingchao Kong
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Siyi Li
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yining Liu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Pan
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingkun Liu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Weihang Hong
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Hua Ma
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingyu Yuan
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ran Duan
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiying Zhan
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zeying Wang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Fu J, Zhang X, Wang D, Liu W, Zhang C, Wang W, Fan W, Zhang L, Sun F. Analysis of the Long Non-Coding and Messenger RNA Expression Profiles in the Skin Tissue of Super Merino and Small-Tailed Han Sheep. Curr Issues Mol Biol 2024; 46:9588-9606. [PMID: 39329922 PMCID: PMC11430798 DOI: 10.3390/cimb46090570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Wool quality and yield are two important economic livestock traits. However, there are relatively few molecular studies on lncRNA for improving sheep wool, so these require further exploration. In this study, we examined skin tissue from the upper scapula of Super Merino (SM) and Small-Tailed Han (STH) sheep during the growing period. The apparent difference was verified via histological examination. High-throughput RNA sequencing identified differentially expressed (DE) long non-coding (lncRNAs) and messenger RNAs (mRNAs). The target gene of DE lncRNA and DE genes were enrichment analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR) was used to verify randomly selected DE lncRNAs and mRNAs. Finally, the DE, RAC2, WNT11, and FZD2 genes, which were enriched in the Wnt signaling pathway, were detected via immunohistochemistry. The results showed that a total of 20,888 lncRNAs and 31,579 mRNAs were identified in the skin tissues of the two sheep species. Among these, 56 lncRNAs and 616 mRNAs were differentially expressed. Through qRT-PCR, the trends in the randomly selected DE genes' expression were confirmed to be aligned with the RNA-seq results. GO and KEGG enrichment analysis showed that DE lncRNA target genes were enriched in GO terms as represented by epidermal and skin development and keratin filature and in KEGG terms as represented by PI3K-Akt, Ras, MAPK, and Wnt signaling pathways, which were related to hair follicle growth and development. Finally, immunohistochemistry staining results indicated that RAC2, WNT11, and FZD2 were expressed in dermal papilla (DP). The lncRNAs MSTRG.9225.1 and MSTRG.98769.1 may indirectly participate in the regulation of hair follicle growth, development, and fiber traits by regulating their respective target genes, LOC114113396(KRTAP15-1), FGF1, and IGF1. In addition, MSTRG.84658.1 may regulate the Wnt signaling pathway involved in the development of sheep hair follicles by targeting RAC2. This study provides a theoretical reference for improving sheep breeding in the future and lays a foundation for further research on the effects of MSTRG.84658.1 and the target gene RAC2 on dermal papilla cells (DPC).
Collapse
Affiliation(s)
- Jiaqi Fu
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Xinyu Zhang
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Dan Wang
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Wenqing Liu
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Caihong Zhang
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Wei Wang
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Wei Fan
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China;
| | - Fuliang Sun
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| |
Collapse
|
4
|
Li C, Wang X, Li H, Ahmed Z, Luo Y, Qin M, Yang Q, Long Z, Lei C, Yi K. Whole-genome resequencing reveals diversity and selective signals in the Wuxue goat. Anim Genet 2024; 55:575-587. [PMID: 38806279 DOI: 10.1111/age.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Animal genetic resources are crucial for ensuring global food security. However, in recent years, a noticeable decline in the genetic diversity of livestock has occurred worldwide. This decline is pronounced in developing countries, where the management of these resources is insufficient. In the current study, we performed whole genome sequencing for 20 Wuxue (WX) and five Guizhou White (GW) goats. Additionally, we utilized the published genomes of 131 samples representing five different goat breeds from various regions in China. We investigated and compared the genetic diversity and selection signatures of WX goats. Whole genome sequencing analysis of the WX and GW populations yielded 120 425 063 SNPs, which resided primarily in intergenic and intron regions. Population genetic structure revealed that WX exhibited genetic resemblance to GW, Chengdu Brown, and Jintang Black and significant differentiation from the other goat breeds. In addition, three methods (nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity) showed moderate genetic diversity in WX goats. We used nucleotide diversity and composite likelihood ratio methods to identify within-breed signatures of positive selection in WX goats. A total of 369 genes were identified using both detection methods, including genes related to reproduction (GRID2, ZNF276, TCF25, and SPIRE2), growth (HMGA2 and GJA3), and immunity (IRF3 and SRSF3). Overall, this study explored the adaptability of WX goats, shedding light on their genetic richness and potential to thrive in challenges posed by climatic changes and diseases. Further investigations are warranted to harness these insights to enhance more efficient and sustainable goat breeding initiatives.
Collapse
Affiliation(s)
- Chuanqing Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianglin Wang
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Yang Luo
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Mao Qin
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Qiong Yang
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Zhangcheng Long
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| |
Collapse
|
5
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Hallmarks of cancer resistance. iScience 2024; 27:109979. [PMID: 38832007 PMCID: PMC11145355 DOI: 10.1016/j.isci.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Pu X, Ma S, Zhao B, Tang S, Lu Q, Liu W, Wang Y, Cen Y, Wu C, Fu X. Transcriptome meta-analysis reveals the hair genetic rules in six animal breeds and genes associated with wool fineness. Front Genet 2024; 15:1401369. [PMID: 38948362 PMCID: PMC11211574 DOI: 10.3389/fgene.2024.1401369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Wool plays an irreplaceable role in the lives of livestock and the textile industry. The variety of hair quality and shape leads to the diversity of its functions and applications, and the finer wool has a higher economic value. In this study, 10 coarse and 10 fine ordos fine wool sheep skin samples were collected for RNA-seq, and coarse and fine skin/hair follicle RNA-seq datasets of other five animal breeds were obtained from NCBI. Weighted gene co-expression network analysis showed that the common genes were clustered into eight modules. Similar gene expression patterns in sheep and rabbits with the same wool types, different gene expression patterns in animal species with different hair types, and brown modules were significantly correlated with species and breeds. GO and KEGG enrichment analyses showed that, most genes in the brown module associated with hair follicle development. Hence, gene expression patterns in skin tissues may determine hair morphology in animal. The analysis of differentially expressed genes revealed that 32 highly expressed candidate genes associated with the wool fineness of Ordos fine wool sheep. Among them, KAZALD1 (grey module), MYOC (brown module), C1QTNF6 (brown module), FOS (tan module), ITGAM, MX2, MX1, and IFI6 genes have been reported to be involved in the regulation of the hair follicle cycle or hair loss. Additionally, 12 genes, including KAZALD1, MYOC, C1QTNF6, and FOS, are differentially expressed across various animal breeds and species. The above results suggest that different sheep breeds share a similar molecular regulatory basis of wool fineness. Finally, the study provides a theoretical reference for molecular breeding of sheep breeds as well as for the investigation of the origin and evolution of animal hair.
Collapse
Affiliation(s)
- Xue Pu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, China
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Shengchao Ma
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Bingru Zhao
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Sen Tang
- Key Laboratory of Herbivorous Livestock Genetics, Ministry of Agriculture, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Qingwei Lu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Wenna Liu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yaqian Wang
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yunlin Cen
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Cuiling Wu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
7
|
Zhao B, Cai J, Zhang X, Li J, Bao Z, Chen Y, Wu X. Single nucleotide polymorphisms in the KRT82 promoter region modulate irregular thickening and patchiness in the dorsal skin of New Zealand rabbits. BMC Genomics 2024; 25:458. [PMID: 38730432 PMCID: PMC11088042 DOI: 10.1186/s12864-024-10370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND While rabbits are used as models in skin irritation tests, the presence of irregular patches and thickening on the dorsal skin can affect precise evaluation. In this study, genes associated with patchiness or non-patchiness on the dorsal skin of New Zealand rabbits were investigated to identify potential regulators of the patchiness phenotype. RESULTS The results showed that parameters associated with hair follicles (HFs), such as HF density, skin thickness, and HF depth, were augmented in rabbits with the patchiness phenotype relative to the non-patchiness phenotype. A total of 592 differentially expressed genes (DEGs) were identified between the two groups using RNA-sequencing. These included KRT72, KRT82, KRT85, FUT8, SOX9, and WNT5B. The functions of the DEGs were investigated by GO and KEGG enrichment analyses. A candidate gene, KRT82, was selected for further molecular function verification. There was a significant positive correlation between KRT82 expression and HF-related parameters, and KRT82 overexpression and knockdown experiments with rabbit dermal papilla cells (DPCs) showed that it regulated genes related to skin and HF growth and development. Investigation of single nucleotide polymorphisms (SNPs) in the exons and promoter region of KRT82 identified four SNPs in the promoter region but none in the exons. The G.-631G > T, T.-696T > C, G.-770G > T and A.-873 A > C alleles conformed to the Hardy - Weinberg equilibrium, and three identified haplotypes showed linkage disequilibrium. Luciferase reporter assays showed that the core promoter region of KRT82 was located in the - 600 to - 1200 segment, in which the four SNPs were located. CONCLUSIONS The morphological characteristics of the patchiness phenotype were analyzed in New Zealand rabbits and DEGs associated with this phenotype were identified by RNA-sequencing. The biological functions of the gene KRT82 associated with this phenotype were analyzed, and four SNPs were identified in the promoter region of the gene. These findings suggest that KRT82 may be a potential biomarker for the breeding of experimental New Zealand rabbits.
Collapse
Affiliation(s)
- Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
8
|
Zhao B, Suo L, Wu Y, Chen T, Tulafu H, Lu Q, Liu W, Sammad A, Wu C, Fu X. Stress adaptation in Tibetan cashmere goats is governed by inherent metabolic differences and manifested through variable cashmere phenotypes. Genomics 2024; 116:110801. [PMID: 38286347 DOI: 10.1016/j.ygeno.2024.110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
Tibetan cashmere goats are not only served as a valuable model for studying adaptation to hypoxia and high-altitude conditions but also playing a pivotal role in bolstering local economies through the provision of premium quality cashmere yarn. In this study, we performed an integration and network analysis of metabolomic, transcriptomic and proteomic to elucidate the role of differentially expressed genes, important metabolites, and relevant cellular and metabolic pathways between the fine (average 12.04 ± 0.03 μm of mean fiber diameter) and coarse cashmere (average 14.88 ± 0.05 μm of mean fber diameter) producing by Tibetan cashmere goats. We identified a distinction of 56 and 71 differential metabolites (DMs) between the F and C cashmere groups under positive and negative ion modes, respectively. The KEGG pathway enrichment analysis of these DMs highlighted numerous pathways predominantly involved in amino acid and protein metabolism, as indicated by the finding that the most impactful pathway was the mammalian target of rapamycin (mTOR) signalling pathway. In the F group, we identified a distinctive metabolic profile where amino acid metabolites including serine, histidine, asparagine, glutamic acid, arginine, valine, aspartic acid, tyrosine, and methionine were upregulated, while lysine, isoleucine, glutamine, tryptophan, and threonine were downregulated. The regulatory network and gene co-expression network revealed crucial genes, metabolites, and metabolic pathways. The integrative omics analysis revealed a high enrichment of several pathways, notably encompassing protein digestion and absorption, sphingolipid signalling, and the synaptic vesicle cycle. Within the sphere of our integrative analysis, DNMT3B was identified as a paramount gene, intricately associated with significant proteins such as HMCN1, CPB2, GNG12, and LRP1. Our present study delineated the molecular underpinnings governing the variations in cashmere characteristics by conducting comprehensive analyses across metabolomic, transcriptomic, and proteomic dimensions. This research provided newly insights into the mechanisms regulating cashmere traits and facilitated the advancement of selective breeding programs aimed at cultivating high-quality superfine Tibetan cashmere goats.
Collapse
Affiliation(s)
- Bingru Zhao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China
| | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850009, China
| | - Yujiang Wu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850009, China
| | - Tong Chen
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China
| | - Hanikezi Tulafu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China
| | - Qingwei Lu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China; College of Animal Science, Xinjiang Agricultural University, Urumqi Xinjiang 830052, China
| | - Wenna Liu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China; College of Animal Science, Xinjiang Agricultural University, Urumqi Xinjiang 830052, China
| | - Abdul Sammad
- College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Cuiling Wu
- Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang/ International Center for the Collaborative Management of Cross-border Pest in Central Asia College of Life Sciences, School of Life Sciences, Xinjiang Normal University, Urumqi Xinjiang 830017, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China.
| |
Collapse
|
9
|
Yue L, Lu Z, Guo T, Liu J, Yang B, Yuan C. Proteome Analysis of Alpine Merino Sheep Skin Reveals New Insights into the Mechanisms Involved in Regulating Wool Fiber Diameter. Int J Mol Sci 2023; 24:15227. [PMID: 37894908 PMCID: PMC10607505 DOI: 10.3390/ijms242015227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Wool fiber is a textile material that is highly valued based on its diameter, which is crucial in determining its economic value. To analyze the molecular mechanisms regulating wool fiber diameter, we used a Data-independent acquisition-based quantitative proteomics approach to analyze the skin proteome of Alpine Merino sheep with four fiber diameter ranges. From three contrasts of defined groups, we identified 275, 229, and 190 differentially expressed proteins (DEPs). Further analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that pathways associated with cyclic adenosine monophosphate and peroxisome proliferator-activated receptor signaling are relevant to wool fiber diameter. Using the K-means method, we investigated the DEP expression patterns across wool diameter ranges. Using weighted gene co-expression network analysis, we identified seven key proteins (CIDEA, CRYM, MLX, TPST2, GPD1, GOPC, and CAMK2G) that may be involved in regulating wool fiber diameter. Our findings provide a theoretical foundation for identifying DEPs and pathways associated with wool fiber diameter in Alpine Merino sheep to enable a better understanding of the molecular mechanisms underlying the genetic regulation of wool fiber quality.
Collapse
Affiliation(s)
- Lin Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
10
|
Wu C, Xu Q, Li J, Qin C, Tulafu H, Liu W, Lu Q, Zheng W, Fu X. Regulation of cashmere fineness traits by noncoding RNA in Jiangnan cashmere goats. BMC Genomics 2023; 24:604. [PMID: 37821834 PMCID: PMC10566132 DOI: 10.1186/s12864-023-09531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/24/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Cashmere has long been used as the raw material for wool textiles. The diameter of the cashmere fibre determines its quality and economic value. However, the regulatory role of noncoding RNAs (ncRNAs) in cashmere fineness remains unclear, especially regarding the interaction between ncRNAs and coding RNAs. RESULTS Transcriptome sequencing was used to identify the expression profiles of long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) in the skin tissues of Jiangnan cashmere goats with different cashmere fineness levels. Integration analysis of ncRNA and coding RNA was performed in combination with previous research results. The results showed that 16,437 lncRNAs, 2234 circRNAs, and 1322 miRNAs were identified in 8 skin samples of cashmere goats. A total of 403 differentially expressed (DE) lncRNAs, 62 DE circRNAs and 30 DE miRNAs were identified in the skin tissues of the fine groups (Fe) and coarse groups (Ce). We predicted the target gene of DE lncRNA, the target gene of DE miRNA and the host gene of DE circRNA. Based on functional annotation and enrichment analysis of target genes, we found that DE lncRNAs could be involved in regulating the fineness traits of cashmere. The most potential lncRNAs were MSTRG.42054.1, MSTRG.18602.3, and MSTRG.2199.13. CONCLUSIONS The data from this study enriched the cashmere goat noncoding RNA database and helped to supplement the annotation of the goat genome. The results provided a new direction for the breeding of cashmere characters.
Collapse
Affiliation(s)
- Cuiling Wu
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Qin Xu
- Key Laboratory of Special Environmental Medicine, Xinjiang Military General Hospital, Urumqi, China
| | - Jianying Li
- Key Laboratory of Special Environmental Medicine, Xinjiang Military General Hospital, Urumqi, China
| | - Chongkai Qin
- Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, China
| | - Hanikezi Tulafu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Wenna Liu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Qingwei Lu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wenxin Zheng
- Xinjiang Uygur Autonomous Region Breeding sheep and wool Cashmere Quality Safety Supervision and Inspection Center, Institute of Animal Husbandry Quality Standard, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China.
| |
Collapse
|
11
|
RNA-Seq Reveals the Roles of Long Non-Coding RNAs (lncRNAs) in Cashmere Fiber Production Performance of Cashmere Goats in China. Genes (Basel) 2023; 14:genes14020384. [PMID: 36833312 PMCID: PMC9956036 DOI: 10.3390/genes14020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA being >200 nucleotides in length, and they are found to participate in hair follicle growth and development and wool fiber traits regulation. However, there are limited studies reporting the role of lncRNAs in cashmere fiber production in cashmere goats. In this study, Liaoning cashmere (LC) goats (n = 6) and Ziwuling black (ZB) goats (n = 6) with remarkable divergences in cashmere yield, cashmere fiber diameter, and cashmere color were selected for the construction of expression profiles of lncRNAs in skin tissue using RNA sequencing (RNA-seq). According to our previous report about the expression profiles of mRNAs originated from the same skin tissue as those used in the study, the cis and trans target genes of differentially expressed lncRNAs between the two caprine breeds were screened, resulting in a lncRNA-mRNA network. A total of 129 lncRNAs were differentially expressed in caprine skin tissue samples between LC goats and ZB goats. The presence of 2 cis target genes and 48 trans target genes for the differentially expressed lncRNAs resulted in 2 lncRNA-cis target gene pairs and 93 lncRNA-trans target gene pairs. The target genes concentrated on signaling pathways that were related to fiber follicle development, cashmere fiber diameter, and cashmere fiber color, including PPAR signaling pathway, metabolic pathways, fatty acid metabolism, fatty acid biosynthesis, tyrosine metabolism, and melanogenesis. A lncRNA-mRNA network revealed 22 lncRNA-trans target gene pairs for seven differentially expressed lncRNAs selected, of which 13 trans target genes contributed to regulation of cashmere fiber diameter, while nine trans target genes were responsible for cashmere fiber color. This study brings a clear explanation about the influences of lncRNAs over cashmere fiber traits in cashmere goats.
Collapse
|
12
|
Wua C, Qin C, Fu X, Zhao B, Wu Y, He J, Mao J, Liu J, Huang X, Tian K. Correlation analysis of four KRTAP gene polymorphisms and cashmere fiber diameters in two cashmere goat breeds. CANADIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1139/cjas-2021-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fiber diameter, a quantitative trait, is controlled by minor effect polygenes. Keratin-associated proteins (KRTAPs) are an important part of hair, and their rich polymorphisms facilitate the mining of cashmere trait molecular markers. In this study, Jiangnan and Tibetan cashmere goats were taken as the research object; multiplex PCR and exome sequencing technology were used to identify the exon regional polymorphisms of cashmere goats KRTAP15-1, KRTAP13.1, KRTAP27-1, and KRTAP24-1. The effects of mutation sites on the fiber diameter of cashmere were analyzed by least square method. The results showed that there were 28 mutation sites in the four KRTAP genes in Jiangnan cashmere goats and Tibetan cashmere goat populations. Among them, the KRTAP13.1, KRTAP27-1, and KRTAP24-1 gene polymorphisms were found to be significantly related to the fiber diameter of Jiangnan cashmere goats. The exploration of molecular markers in this study will help to improve the fiber diameter of the down, while the identification of gene polymorphisms will provide original data for the utilization and protection of germplasm resources of cashmere goats.
Collapse
Affiliation(s)
- Cuiling Wua
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830000, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830000, China
| | - Bingru Zhao
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Yujiang Wu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Junmin He
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jingyi Mao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Jing Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830000, China
| |
Collapse
|
13
|
Wu C, Li J, Xu X, Xu Q, Qin C, Liu G, Wei C, Zhang G, Tian K, Fu X. Effect of the FA2H Gene on cashmere fineness of Jiangnan cashmere goats based on transcriptome sequencing. BMC Genomics 2022; 23:527. [PMID: 35864447 PMCID: PMC9306159 DOI: 10.1186/s12864-022-08763-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cashmere goats are a heterogeneous hairy mammal. The fineness of cashmere can affect its economic value. Therefore, in this study, we used transcriptome sequencing techniques to analyze the gene expression profiles of the skin tissues of cashmere goats with different cashmere fineness. The selected candidate genes were functionally verified with the secondary hair follicle hair papillary cells of cashmere goats. Results We identified 479 DEGs, of which 238 mRNAs were up-regulated in the fine velvet group and 241 mRNA were down-regulated. Based on functional annotation and protein interaction network analysis, we found some genes that may affect the fineness of cashmere, including SOX18, SOX4, WNT5A, IGFBP4, KAP8, KRT36, and FA2H. Using qRT-PCR, Western blot, CCK-8 cell viability detection, EDU cell proliferation detection, and flow cytometry, we found that overexpression of the FA2H gene could promote the proliferation of secondary hair follicle DPCs in cashmere goats. At the same time, we proved that FA2H could regulate the expression levels of the FGF5 and BMP2 genes in DPCs. Conclusion The results of this study provide a useful reference for the genetics and breeding of Jiangnan cashmere goats and goat genome annotation, and provide an experimental basis for improving cashmere quality of the cashmere goat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08763-7.
Collapse
Affiliation(s)
- Cuiling Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Jianying Li
- Key Laboratory of Special Environmental Medicine, Xinjiang Military General Hospital, Urumqi, 830000, China
| | - Xinming Xu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Qi Xu
- Key Laboratory of Special Environmental Medicine, Xinjiang Military General Hospital, Urumqi, 830000, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Guifen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chen Wei
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Guoping Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
14
|
Gong G, Fan Y, Li W, Yan X, Yan X, Zhang L, Wang N, Chen O, Zhang Y, Wang R, Liu Z, Jiang W, Li J, Wang Z, Lv Q, Su R. Identification of the Key Genes Associated with Different Hair Types in the Inner Mongolia Cashmere Goat. Animals (Basel) 2022; 12:ani12111456. [PMID: 35681921 PMCID: PMC9179306 DOI: 10.3390/ani12111456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
The Inner Mongolia cashmere goat is an excellent local breed in China. According to the characteristics of wool quilts, the Inner Mongolia cashmere goat can be divided into three types: a long-hair type (hair length of >22 cm), a short-hair type (hair length of ≤13 cm), and an intermediate type (hair length of >13 cm and ≤22 cm). It is found that hair length has a certain reference value for the indirect selection of other important economic traits of cashmere. In order to explore the molecular mechanisms and related regulatory genes of the different hair types, a weighted gene coexpression network analysis (WGCNA) was carried out on the gene expression data and phenotypic data of 12-month-old Inner Mongolia cashmere goats with a long-hair type (LHG) and a short-hair type (SHG) to explore the coexpression modules related to different coat types and nine candidate genes, and detect the relative expression of key candidate genes. The results showed that the WGCNA divided these genes into 19 coexpression modules and found that there was a strong correlation between one module and different hair types. The expression trends of this module’s genes were different in the two hair types, with high expression in the LHG and low expression in the SHG. GO functions are mainly concentrated in cellular components, including intermediate filaments (GO:0005882), intermediate filament cytoskeletons (GO:0045111), and cytoskeletal parts (GO:0044430). The KEGG pathway is mainly enriched in arginine as well as proline metabolism (chx00330) and the MAPK signaling pathway (chx04010). The candidate genes of the different hair types, including the KRT39, KRT74, LOC100861184, LOC102177231, LOC102178767, LOC102179881, LOC106503203, LOC108638293, and LOC108638298 genes, were screened. Through qRT-PCR, it was found that there were significant differences in these candidate genes between the two hair types, and most of them had a significant positive correlation with hair length. It was preliminarily inferred that these candidate genes could regulate the different hair types of cashmere goats and provide molecular markers for hair growth.
Collapse
Affiliation(s)
- Gao Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Yixing Fan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China;
| | - Wenze Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Xiaochun Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Xiaomin Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Ludan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Na Wang
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd., Hohhot 010018, China; (N.W.); (O.C.)
| | - Oljibilig Chen
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd., Hohhot 010018, China; (N.W.); (O.C.)
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Wei Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (Q.L.); (R.S.)
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (Q.L.); (R.S.)
| |
Collapse
|
15
|
Wu C, Qin C, Fu X, Huang X, Tian K. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Vet Res 2022; 18:167. [PMID: 35524260 PMCID: PMC9074311 DOI: 10.1186/s12917-022-03253-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Among the world's finest natural fiber composites is derived from the secondary hair follicles (SHFs) of cashmere goats yield one of the world's best natural fibres. Their development and cycling are characterized by photoperiodism with diverse, well-orchestrated stimulatory and inhibitory signals. Long non-coding RNA (lncRNAs) and mRNAs play important roles in hair follicle (HF) development. However, not many studies have explored their specific functions in cashmere development and cycling. This study detected mRNAs and lncRNAs with their candidate genes and related pathways in SHF development and cycling of cashmere goat. We utilized RNA sequencing (RNA-Seq) and bioinformatics analysis on lncRNA and mRNA expressions in goat hair follicles to discover candidate genes and metabolic pathways that could affect development and cycling (anagen, catagen, and telogen). RESULTS We identified 228 differentially expressed (DE) mRNAs and 256 DE lncRNA. For mRNAs, catagen and anagen had 16 upregulated and 35 downregulated DEGs, catagen and telogen had 18 upregulated and 9 downregulated DEGs and telogen and anagen had 52 upregulated and 98 downregulated DEGs. LncRNA witnessed 22 upregulated and 39 downregulated DEGs for catagen and anagen, 36 upregulated and 29 downregulated DEGs for catagen and telogen as well as 66 upregulated and 97 downregulated DEGs for telogen and anagen. Several key genes, including MSTRG.5451.2, MSTRG.45465.3, MSTRG.11609.2, CHST1, SH3BP4, CDKN1A, GAREM1, GSK-3β, DEFB103A KRTAP9-2, YAP1, S100A7A, FA2H, LOC102190037, LOC102179090, LOC102173866, KRT2, KRT39, FAM167A, FAT4 and EGFL6 were shown to be potentially important in hair follicle development and cycling. They were related to, WNT/β-catenin, mTORC1, ERK/MAPK, Hedgehog, TGFβ, NFkB/p38MAPK, caspase-1, and interleukin (IL)-1a signaling pathways. CONCLUSION This work adds to existing understanding of the regulation of HF development and cycling in cashmere goats via lncRNAs and mRNAs. It also serves as theoretical foundation for future SHF research in cashmere goats.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China. .,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
16
|
Bai Z, Xu Y, Gu M, Cai W, Zhang Y, Qin Y, Chen R, Sun Y, Wu Y, Wang Z. Proteomic analysis of coarse and fine skin tissues of Liaoning cashmere goat. Funct Integr Genomics 2022; 22:503-513. [PMID: 35366687 DOI: 10.1007/s10142-022-00856-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Proteomics is the study of all proteins expressed by a cell or even an organism. However, knowledge of proteins that regulate the fineness of cashmere is limited. Liaoning cashmere goat (LCG) is a valuable genetic resource of China. The skin samples of Liaoning cashmere goats during the growing period were collected, performed tandem mass tag (TMT) method, and identified 117 differentially expressed proteins in CT_LCG (course type) and FT_LCG (fine type). To verify proteins differentially expressed in LCG, we performed PRM validation on three candidate proteins (ALB, SDC1, and ITGB4) in CT-LCG and FT-LCG. Furthermore, primary metabolic process and lysosome are most enriched in the GO and KEGG pathways, respectively. In addition, we also derived a protein-protein interaction (PPI) regulatory network from the perspective of bioinformatics. This study sought to elucidate the molecular mechanism of differential proteins regulating cashmere fineness of Liaoning cashmere goats by using TMT quantitative proteomics analysis. Differentially expressed proteins ALB and SDC1 may regulate cashmere fineness; ITGB4 can become a promising protein for further study. They can be used as key proteins to lay a foundation for studying cashmere fineness of Liaoning cashmere goats.
Collapse
Affiliation(s)
- Zhixian Bai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanan Xu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming Gu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weidong Cai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu Zhang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuting Qin
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Chen
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yinggang Sun
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanzhi Wu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zeying Wang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
17
|
Zhao B, Wu C, Sammad A, Ma Z, Suo L, Wu Y, Fu X. The fiber diameter traits of Tibetan cashmere goats are governed by the inherent differences in stress, hypoxic, and metabolic adaptations: an integrative study of proteome and transcriptome. BMC Genomics 2022; 23:191. [PMID: 35255833 PMCID: PMC8903710 DOI: 10.1186/s12864-022-08422-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background Tibetan cashmere goats are served as a valuable model for high altitude adaptation and hypoxia complications related studies, while the cashmere produced by these goats is an important source of income for the herders. The aim of this study was to investigate the differences in protein abundance underlying the fine (average 12.20 ± 0.03 μm of mean fiber diameter) and coarse cashmere (average 14.67 ± 0.05 μm of mean fiber diameter) producing by Tibetan cashmere goats. We systematically investigated the genetic determinants of fiber diameter by integrated analysis with proteomic and transcriptomic datasets from skin tissues of Tibetan cashmere goats. Results We identified 1980 proteins using a label-free proteomics approach. They were annotated to three different databases, while 1730 proteins were mapped to the original protein coding genes (PCGs) of the transcriptomic study. Comparative analyses of cashmere with extremely fine vs. coarse phenotypes yielded 29 differentially expressed proteins (DEPs), for instance, APOH, GANAB, AEBP1, CP, CPB2, GPR142, VTN, IMPA1, CTSZ, GLB1, and HMCN1. Functional enrichment analysis of these DEPs revealed their involvement in oxidation-reduction process, cell redox homeostasis, metabolic, PI3K-Akt, MAPK, and Wnt signaling pathways. Transcription factors enrichment analysis revealed the proteins mainly belong to NF-YB family, HMG family, CSD family. We further validated the protein abundance of four DEPs (GC, VTN, AEBP1, and GPR142) through western blot, and considered they were the most potential candidate genes for cashmere traits in Tibetan cashmere goats. Conclusions These analyses indicated that the major biological variations underlying the difference of cashmere fiber diameter in Tibetan cashmere goats were attributed to the inherent adaptations related to metabolic, hypoxic, and stress response differences. This study provided novel insights into the breeding strategies for cashmere traits and enhance the understanding of the biological and genetic mechanisms of cashmere traits in Tibetan cashmere goats. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08422-x.
Collapse
Affiliation(s)
- Bingru Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Ma
- Key Laboratory of Genetics Breeding and Reproduction of the Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yujiang Wu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of the Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China.
| |
Collapse
|
18
|
Qin Y, Xu Y, Zhang Y, Gu M, Cai W, Bai Z, Zhang X, Chen R, Sun Y, Wu Y, Wang Z. Transcriptomics analysis of cashmere fineness functional genes. Anim Biotechnol 2022:1-11. [PMID: 35253626 DOI: 10.1080/10495398.2022.2042306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Liaoning cashmere goat (LCG) is a famous cashmere goat breed in China. Cashmere fineness, as an important index to evaluate cashmere quality, is also one of the problems to be improved for Liaoning cashmere goats. Transcriptome studies all mRNA transcribed by a specific tissue or cell in a certain period. It is a key link in the study of gene expression regulation. It plays an important role in the analysis of biological growth and disease. Transcriptome is spatio-temporal specific, that is, gene expression varies in different tissues or at different times. Three coarser and three fine LCG skin samples were sequenced by RNA-seq technology, and a total of 427 differentially expressed genes were obtained, including 291 up-regulated genes and 136 down-regulated genes. In the experiment, we screened out 16 genes that had significant differences in the expression of coarse and fine cashmere of Liaoning cashmere goats, so it was inferred that these 16 genes might have regulatory effects on cashmere fineness. Moreover, GO gene set enrichment analysis revealed that differential genes mainly consist of immune response, MHC protein complex, Heme binding and other pathways. KEGG analysis showed that transplant-versus-host disease and allograft rejection were the main pathways of differential genes.
Collapse
Affiliation(s)
- Yuting Qin
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanan Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yu Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yinggang Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
19
|
Zhang Y, Zhang D, Xu Y, Qin Y, Gu M, Cai W, Bai Z, Zhang X, Chen R, Sun Y, Wu Y, Wang Z. Selection of Cashmere Fineness Functional Genes by Translatomics. Front Genet 2022; 12:775499. [PMID: 35096002 PMCID: PMC8790676 DOI: 10.3389/fgene.2021.775499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Cashmere fineness is an important index to evaluate cashmere quality. Liaoning Cashmere Goat (LCG) has a large cashmere production and long cashmere fiber, but its fineness is not ideal. Therefore, it is important to find genes involved in cashmere fineness that can be used in future endeavors aiming to improve this phenotype. With the continuous advancement of research, the regulation of cashmere fineness has made new developments through high-throughput sequencing and genome-wide association analysis. It has been found that translatomics can identify genes associated with phenotypic traits. Through translatomic analysis, the skin tissue of LCG sample groups differing in cashmere fineness was sequenced by Ribo-seq. With these data, we identified 529 differentially expressed genes between the sample groups among the 27197 expressed genes. From these, 343 genes were upregulated in the fine LCG group in relation to the coarse LCG group, and 186 were downregulated in the same relationship. Through GO enrichment analysis and KEGG enrichment analysis of differential genes, the biological functions and pathways of differential genes can be found. In the GO enrichment analysis, 491 genes were significantly enriched, and the functional region was mainly in the extracellular region. In the KEGG enrichment analysis, the enrichment of the human papillomavirus infection pathway was seen the most. We found that the COL6A5 gene may affect cashmere fineness.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Dongyun Zhang
- International Business School and International Economics and Trade, Shenyang Normal University, Shenyang, China
| | - Yanan Xu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuting Qin
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingang Sun
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
20
|
Integrated Analysis of lncRNA and mRNA Reveals Novel Insights into Wool Bending in Zhongwei Goat. Animals (Basel) 2021; 11:ani11113326. [PMID: 34828057 PMCID: PMC8614501 DOI: 10.3390/ani11113326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The high-quality lambskin of the Chinese Zhongwei goat has a high economic value. The quality of lamb skin is mainly affected by the curvature of the wool, which is regulated by the growth and development of hair follicles. In this study, the expression profiles of long non-coding RNAs (lncRNAs) of 45-day-old and 108-day-old Zhongwei goats were constructed by the Ribo Zero RNA sequencing. A total of 60 differential lncRNAs and 352 differential mRNAs were identified. The functional annotation of differential lncRNAs target genes showed that they were mainly enriched in PI3K-Akt and Arachidonic acid metabolic signaling pathways. In combination with qRT-PCR and WGCNA results, we speculate that LOC102172600 and LOC102191729 might affect hair follicle development and wool curvature by regulating the target genes. These results provide new insights into the potential role of lncRNA in regulating wool bending. Abstract Chinese Zhongwei goat is a rare and precious fur breed as its lamb fur is a well-known fur product. Wool bending of lamb fur of the Zhongwei goat is its most striking feature. However, the curvature of the wool decreases gradually with growth, which significantly affects its quality and economic value. The mechanism regulating the phenotypic changes of hair bending is still unclear. In the present study, the skin tissues of Zhongwei goats at 45 days (curving wool) and 108 days (slight-curving wool) after birth were taken as the research objects, and the expression profiling of long non-coding RNAs (lncRNAs) and mRNAs were analyzed based on the Ribo Zero RNA sequencing (RNA-seq) method. In total, 46,013 mRNAs and 13,549 lncRNAs were identified, of which 352 were differentially expressed mRNAs and 60 were. lncRNAs. Functional enrichment analysis of the target genes of lncRNAs were mainly enriched in PI3K-Akt, Arachidonic acid metabolic, cAMP, Wnt, and other signaling pathways. The qRT-PCR results of eight selected lncRNAs and target genes were consistent with the sequencing result, which indicated our data were reliable. Through the analysis of the weighted gene co-expression network, 13 co-expression modules were identified. The turquoise module contained a large number of differential expressed lncRNAs, which were mainly enriched in the PI3K-Akt signaling pathway and cAMP signaling pathway. The predicted LOC102172600 and LOC102191729 might affect the development of hair follicles and the curvature of wool by regulating the target genes. Our study provides novel insights into the potential roles of lncRNAs in the regulation of wool bending. In addition, the study offers a theoretical basis for further study of goat wool growth, so as to be a guidance and reference for breeding and improvement in the future.
Collapse
|