1
|
Gansevoort M, Oostendorp C, Bouwman LF, Tiemessen DM, Geutjes PJ, Feitz WFJ, van Kuppevelt TH, Daamen WF. Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model. Tissue Eng Regen Med 2024; 21:1173-1187. [PMID: 39215940 PMCID: PMC11589036 DOI: 10.1007/s13770-024-00667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development. Surgical closure of the skin in utero limits neurological damage, but in large defects this results in scarring and contractures. Stimulating skin regeneration in utero would greatly benefit treatment outcome. Previously, we demonstrated that a porous type I collagen (COL) scaffold, functionalized with heparin (HEP), fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) (COL-HEP/GF) improved pre- and postnatal skin regeneration in a fetal sheep full thickness wound model. In this study we uncover the early events associated with enhanced skin regeneration. METHODS We investigated the gene expression profiles of healing fetal skin wounds two weeks after implantation of the COL(-HEP/GF) scaffolds. Using laser dissection and microarrays, differentially expressed genes (DEG) were identified in the epidermis and dermis between untreated wounds, COL-treated wounds and wounds treated with COL-HEP/GF. Biological processes were identified using gene enrichment analysis and DEG were clustered using protein-protein-interaction networks. RESULTS COL-HEP/GF influences various interesting biological processes involved in wound healing. Although the changes were modest, using protein-protein-interaction networks we identified a variety of clustered genes that indicate COL-HEP/GF induces a tight but subtle control over cell signaling and extracellular matrix organization. CONCLUSION These data offer a novel perspective on the key processes involved in (fetal) wound healing, where a targeted and early interference during wound healing can result in long-term enhanced effects on skin regeneration.
Collapse
Affiliation(s)
- Merel Gansevoort
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Corien Oostendorp
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- HAN University of Applied Sciences, Arnhem, The Netherlands
| | - Linde F Bouwman
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Dorien M Tiemessen
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Zhang X, Shao R. LncRNA SNHG8 upregulates MUC5B to induce idiopathic pulmonary fibrosis progression by targeting miR-4701-5p. Heliyon 2024; 10:e23233. [PMID: 38163156 PMCID: PMC10756985 DOI: 10.1016/j.heliyon.2023.e23233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play a critical role in idiopathic pulmonary fibrosis (IPF); however, the underlying molecular mechanisms are unclear. Our study demonstrated that lncRNA small nucleolar RNA host gene 8 (SNHG8) was increased in bleomycin (BLM)-induced A549 cells. LncRNA SNHG8 overexpression further elevated fibrosis-related factors monocyte chemotactic protein 1 (MCP1), CC motif chemokine ligand 18 (CCL18), and α-smooth muscle actin (α-SMA), as well as increased collagen type I alpha-1 chain (COL1A1) and collagen type III alpha-1 chain (COL3A1). Meanwhile, lncRNA SNHG8 knockdown exhibited an opposite role in reducing BLM-induced pulmonary fibrosis. With regard to the mechanism, SNHG8 was then revealed to act as a competing endogenous RNA (ceRNA) for microRNA (miR)-4701-5p in regulating Mucin 5B (MUC5B) expression. Furthermore, the interactions between SNHG8 and miR-4701-5p, between miR-4701-5p and MUC5B, and between SNHG8 and MUC5B on the influence of fibrosis-related indicators were confirmed, respectively. In addition, SNHG8 overexpression enhanced the levels of transforming growth factor (TGF)-β1 and phosphorylation Smad2/3 (p-Smad2/3), which was suppressed by SNHG8 knockdown in BLM-induced A549 cells. Moreover, miR-4701-5p inhibitor-induced elevation of TGF-β1 and p-Smad2/3 was significantly suppressed by SNHG8 knockdown. In conclusion, SNHG8 knockdown attenuated pulmonary fibrosis progression by regulating miR-4701-5p/MUC5B axis, which might be associated with the modulation of TGF-β1/Smad2/3 signaling. These findings reveal that lncRNA SNHG8 may become a potential target for the treatment of IPF.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Runxia Shao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| |
Collapse
|
3
|
Sun C, Bai M, Jia Y, Tian X, Guo Y, Xu X, Guo Z. mRNA sequencing reveals the distinct gene expression and biological functions in cardiac fibroblasts regulated by recombinant fibroblast growth factor 2. PeerJ 2023; 11:e15736. [PMID: 37483983 PMCID: PMC10362857 DOI: 10.7717/peerj.15736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
After myocardial injury, cardiac fibroblasts (CFs) differentiate into myofibroblasts, which express and secrete extracellular matrix (ECM) components for myocardial repair, but also promote myocardial fibrosis. Recombinant fibroblast growth factor 2 (FGF2) protein drug with low molecular weight can promote cell survival and angiogenesis, and it was found that FGF2 could inhibit the activation of CFs, suggesting FGF2 has great potential in myocardial repair. However, the regulatory role of FGF2 on CFs has not been fully elucidated. Here, we found that recombinant FGF2 significantly suppressed the expression of alpha smooth muscle actin (α-SMA) in CFs. Through RNA sequencing, we analyzed mRNA expression in CFs and the differently expressed genes regulated by FGF2, including 430 up-regulated genes and 391 down-regulated genes. Gene ontology analysis revealed that the differentially expressed genes were strongly enriched in multiple biological functions, including ECM organization, cell adhesion, actin filament organization and axon guidance. The results of gene set enrichment analysis (GSEA) show that ECM organization and actin filament organization are down-regulated, while axon guidance is up-regulated. Further cellular experiments indicate that the regulatory functions of FGF2 are consistent with the findings of the gene enrichment analysis. This study provides valuable insights into the potential therapeutic role of FGF2 in treating cardiac fibrosis and establishes a foundation for further research to uncover the underlying mechanisms of CFs gene expression regulated by FGF2.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mengru Bai
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yonglong Guo
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinhui Xu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
4
|
Fibroblast growth factor-2 bound to specific dermal fibroblast-derived extracellular vesicles is protected from degradation. Sci Rep 2022; 12:22131. [PMID: 36550142 PMCID: PMC9780220 DOI: 10.1038/s41598-022-26217-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor-2 (FGF2) has multiple roles in cutaneous wound healing but its natural low stability prevents the development of its use in skin repair therapies. Here we show that FGF2 binds the outer surface of dermal fibroblast (DF)-derived extracellular vesicles (EVs) and this association protects FGF2 from fast degradation. EVs isolated from DF cultured in the presence of FGF2 harbor FGF2 on their surface and FGF2 can bind purified EVs in absence of cells. Remarkably, FGF2 binding to EVs is restricted to a specific subpopulation of EVs, which do not express CD63 and CD81 markers. Treatment of DF with FGF2-EVs activated ERK and STAT signaling pathways and increased cell proliferation and migration. Local injection of FGF2-EVs improved wound healing in mice. We further demonstrated that binding to EVs protects FGF2 from both thermal and proteolytic degradation, thus maintaining FGF2 function. This suggests that EVs protect soluble factors from degradation and increase their stability and half-life. These results reveal a novel aspect of EV function and suggest EVs as a potential tool for delivering FGF2 in skin healing therapies.
Collapse
|
5
|
FGF-2 enhances fibrogenetic changes in TGF-β2 treated human conjunctival fibroblasts. Sci Rep 2022; 12:16006. [PMID: 36163231 PMCID: PMC9512844 DOI: 10.1038/s41598-022-20036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
The objective of the current study was to examine the effects of fibroblast growth factor-2 (FGF-2) on conjunctival fibrogenesis that was induced by the presence of transforming growth factor-β2 (TGF-β2). Two-dimension (2D) and three-dimension (3D) cultured human conjunctival fibroblasts (HconF) were used for this purpose. The 2D and 3D cultured HconF were characterized by transendothelial electrical resistance (TEER) and FITC dextran permeability measurements (2D), real-time metabolic analyses (2D), size and stiffness measurements (3D), and the mRNA expression of extracellular matrix molecules, their modulators, Tissue inhibitor of metalloproteinases and matrix metalloproteinases and ER-stress related genes (2D and 3D). FGF-2 significantly increased planar proliferation, as evidenced by TEER values and FITC dextran permeability, and shifted glucose metabolism to the energetic phenotype of 2D HconF cells, and the stiffness of the 3D spheroids, and these effects were further enhanced in the presence of TGF-β2. Analyses of the expression of possible candidate molecules involved in cell architecture and stress indicated that some additive effects caused by both factors were also recognized in some of these molecules. The findings reported herein indicate that the FGF-2, either along or additively with TGF- β2 increased the fibrogenetic changes on the plane as well as in the spatial space of HconF cells.
Collapse
|
6
|
Dolivo DM. Anti-fibrotic effects of pharmacologic FGF-2: a review of recent literature. J Mol Med (Berl) 2022; 100:847-860. [PMID: 35484303 DOI: 10.1007/s00109-022-02194-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
Fibrosis is a process of pathological tissue repair that replaces damaged, formerly functional tissue with a non-functional, collagen-rich scar. Complications of fibrotic pathologies, which can arise in numerous organs and from numerous conditions, result in nearly half of deaths in the developed world. Despite this, therapies that target fibrosis at its mechanistic roots are still notably lacking. The ubiquity of the occurrence of fibrosis in myriad organs emphasizes the fact that there are shared mechanisms underlying fibrotic conditions, which may serve as common therapeutic targets for multiple fibrotic diseases of varied organs. Thus, study of the basic science of fibrosis and of anti-fibrotic modalities is critical to therapeutic development and may have potential to translate across organs and disease states. Fibroblast growth factor 2 (FGF-2) is a broadly studied member of the fibroblast growth factors, a family of multipotent cytokines implicated in diverse cellular and tissue processes, which has previously been recognized for its anti-fibrotic potential. However, the mechanisms underlying this potential are not fully understood, nor is the potential for its use to ameliorate fibrosis in diverse pathologies and tissues. Presented here is a review of recent literature that sheds further light on these questions, with the hopes of inspiring further research into the mechanisms underlying the anti-fibrotic activities of FGF-2, as well as the disease conditions for which pharmacologic FGF-2 might be a useful option in the future.
Collapse
|