1
|
Shahzaib M, Khan UM, Azhar MT, Atif RM, Khan SH, Zaman QU, Rana IA. Phylogenomic curation of Ovate Family Proteins (OFPs) in the U's Triangle of Brassica L. indicates stress-induced growth modulation. PLoS One 2024; 19:e0297473. [PMID: 38277374 PMCID: PMC10817133 DOI: 10.1371/journal.pone.0297473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/06/2024] [Indexed: 01/28/2024] Open
Abstract
The Ovate Family Proteins (OFPs) gene family houses a class of proteins that are involved in regulating plant growth and development. To date, there is no report of the simultaneous functional characterization of this gene family in all members of U's Triangle of Brassica. Here, we retrieved a combined total of 256 OFP protein sequences and analyzed their chromosomal localization, gene structure, conserved protein motif domains, and the pattern of cis-acting regulatory elements. The abundance of light-responsive elements like G-box, MRE, and GT1 motif suggests that OFPs are sensitive to the stimuli of light. The protein-protein interaction network analysis revealed that OFP05 and its orthologous genes were involved in regulating the process of transcriptional repression through their interaction with homeodomain transcription factors like KNAT and BLH. The presence of domains like DNA binding 2 and its superfamily speculated the involvement of OFPs in regulating gene expression. The biotic and abiotic stress, and the tissue-specific expression analysis of the RNA-seq datasets revealed that some of the genes such as BjuOFP30, and BnaOFP27, BolOFP11, and BolOFP10 were highly upregulated in seed coat at the mature stage and roots under various chemical stress conditions respectively which suggests their crucial role in plant growth and development processes. Experimental validation of prominent BnaOFPs such as BnaOFP27 confirmed their involvement in regulating gene expression under salinity, heavy metal, drought, heat, and cold stress. The GO and KEGG pathway enrichment analysis also sheds light on the involvement of OFPs in regulating plant growth and development. These findings have the potential to serve as a forerunner for future studies in terms of functionally diverse analysis of the OFP gene family in Brassica and other plant species.
Collapse
Affiliation(s)
- Muhammad Shahzaib
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, Punjab, Pakistan
| | - Uzair Muhammad Khan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, Punjab, Pakistan
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, Punjab, Pakistan
| | - Rana Muhammad Atif
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, Punjab, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, Punjab, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, Punjab, Pakistan
| | - Qamar U. Zaman
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Iqrar Ahmad Rana
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, Punjab, Pakistan
| |
Collapse
|
2
|
Luo Y, Yang S, Luo X, Li J, Li T, Tang X, Liu F, Zou X, Qin C. Genome-wide analysis of OFP gene family in pepper (Capsicum annuum L.). Front Genet 2022; 13:941954. [PMID: 36246640 PMCID: PMC9563708 DOI: 10.3389/fgene.2022.941954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ovate family proteins (OFPs) are transcriptional inhibitors that regulate plant growth and development and play important roles in the synthesis of secondary cell walls during pollen development. This study identified the pepper OFP gene family based on the genome-wide analysis and used bioinformatics methods to provide a fundamental profile of the gene family. 74 OFP genes with typical Ovate domain were identified in cultivated pepper Zunla-1, wild pepper Chiltepin and CM334. Chromosome mapping revealed that CazOFP genes were unevenly distributed on 11 chromosomes and Chr00 in Zunla-1, CacOFP genes on 12 chromosomes in Chiltepin, and CamOFP genes on 12 chromosomes and two Scaffflods in CM334. Gene structure analysis revealed that CaOFP genes possessed 1-3 exons, and the analysis of physicochemical properties suggested that CaOFPs were hydrophilic. Many cis-acting elements were identified in the promoter region of CaOFP genes, including ABRE, ARE, Box 4, G-box, TC-rich, and TCT-motif. The expression patterns of pepper at different growth stages showed that CaOFP genes were actively involved in the growth and fruit development of pepper, and CazOFP16 and CazOFP17 were actively involved in response to multiple hormones and stress events. qRT-PCR was also used to verify the expression of CazOFP gene in two developmental stages of seven pepper varieties with different fruit shapes, and it was found that CaOFP genes may be involved in the formation of fruit type in pepper. This study provides theoretical and practical evidence for future research on the OFP gene family.
Collapse
Affiliation(s)
- Yin Luo
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Shimei Yang
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Xirong Luo
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Jing Li
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Tangyan Li
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Xiangqun Tang
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation, Zunyi Academy of Agricultural Sciences, Zunyi, China
| | - Feng Liu
- Longping Branch, College of Biology, Hunan University, Changsha, China
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xuexiao Zou
- Longping Branch, College of Biology, Hunan University, Changsha, China
- College of Horticulture, Hunan Agricultural University, Changsha, China
- *Correspondence: Xuexiao Zou, ; Cheng Qin,
| | - Cheng Qin
- Engineering Research Center of Zunyi Pepper Germplasm Resources Conservation and Breeding Cultivation of Guizhou Province, Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
- *Correspondence: Xuexiao Zou, ; Cheng Qin,
| |
Collapse
|