1
|
Emegano DI, Mustapha MT, Ozsahin I, Ozsahin DU, Uzun B. Advancing Prostate Cancer Diagnostics: A ConvNeXt Approach to Multi-Class Classification in Underrepresented Populations. Bioengineering (Basel) 2025; 12:369. [PMID: 40281729 PMCID: PMC12025319 DOI: 10.3390/bioengineering12040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Prostate cancer is a leading cause of cancer-related morbidity and mortality worldwide, with diagnostic challenges magnified in underrepresented regions like sub-Saharan Africa. This study introduces a novel application of ConvNeXt, an advanced convolutional neural network architecture, for multi-class classification of prostate histopathological images into normal, benign, and malignant categories. The dataset, sourced from a tertiary healthcare institution in Nigeria, represents a typically underserved African population, addressing critical disparities in global diagnostic research. We also used the ProstateX dataset (2017) from The Cancer Imaging Archive (TCIA) to validate our result. A comprehensive pipeline was developed, leveraging advanced data augmentation, Grad-CAM for interpretability, and an ablation study to enhance model optimization and robustness. The ConvNeXt model achieved an accuracy of 98%, surpassing the performance of traditional CNNs (ResNet50, 93%; EfficientNet, 94%; DenseNet, 92%) and transformer-based models (ViT, 88%; CaiT, 86%; Swin Transformer, 95%; RegNet, 94%). Also, using the ProstateX dataset, the ConvNeXt model recorded 87.2%, 85.7%, 86.4%, and 0.92 as accuracy, recall, F1 score, and AUC, respectively, as validation results. Its hybrid architecture combines the strengths of CNNs and transformers, enabling superior feature extraction. Grad-CAM visualizations further enhance explainability, bridging the gap between computational predictions and clinical trust. Ablation studies demonstrated the contributions of data augmentation, optimizer selection, and learning rate tuning to model performance, highlighting its robustness and adaptability for deployment in low-resource settings. This study advances equitable health care by addressing the lack of regional representation in diagnostic datasets and employing a clinically aligned three-class classification approach. Combining high performance, interpretability, and scalability, this work establishes a foundation for future research on diverse and underrepresented populations, fostering global inclusivity in cancer diagnostics.
Collapse
Affiliation(s)
- Declan Ikechukwu Emegano
- Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey (D.U.O.); (B.U.)
| | - Mubarak Taiwo Mustapha
- Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey (D.U.O.); (B.U.)
| | - Ilker Ozsahin
- Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey (D.U.O.); (B.U.)
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey (D.U.O.); (B.U.)
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Berna Uzun
- Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey (D.U.O.); (B.U.)
- Department of Mathematics, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| |
Collapse
|
2
|
Molière S, Hamzaoui D, Ploussard G, Mathieu R, Fiard G, Baboudjian M, Granger B, Roupret M, Delingette H, Renard-Penna R. A Systematic Review of the Diagnostic Accuracy of Deep Learning Models for the Automatic Detection, Localization, and Characterization of Clinically Significant Prostate Cancer on Magnetic Resonance Imaging. Eur Urol Oncol 2024:S2588-9311(24)00248-7. [PMID: 39547898 DOI: 10.1016/j.euo.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND OBJECTIVE Magnetic resonance imaging (MRI) plays a critical role in prostate cancer diagnosis, but is limited by variability in interpretation and diagnostic accuracy. This systematic review evaluates the current state of deep learning (DL) models in enhancing the automatic detection, localization, and characterization of clinically significant prostate cancer (csPCa) on MRI. METHODS A systematic search was conducted across Medline/PubMed, Embase, Web of Science, and ScienceDirect for studies published between January 2020 and September 2023. Studies were included if these presented and validated fully automated DL models for csPCa detection on MRI, with pathology confirmation. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool and the Checklist for Artificial Intelligence in Medical Imaging. KEY FINDINGS AND LIMITATIONS Twenty-five studies met the inclusion criteria, showing promising results in detecting and characterizing csPCa. However, significant heterogeneity in study designs, validation strategies, and datasets complicates direct comparisons. Only one-third of studies performed external validation, highlighting a critical gap in generalizability. The reliance on internal validation limits a broader application of these findings, and the lack of standardized methodologies hinders the integration of DL models into clinical practice. CONCLUSIONS AND CLINICAL IMPLICATIONS DL models demonstrate significant potential in improving prostate cancer diagnostics on MRI. However, challenges in validation, generalizability, and clinical implementation must be addressed. Future research should focus on standardizing methodologies, ensuring external validation and conducting prospective clinical trials to facilitate the adoption of artificial intelligence (AI) in routine clinical settings. These findings support the cautious integration of AI into clinical practice, with further studies needed to confirm their efficacy in diverse clinical environments. PATIENT SUMMARY In this study, we reviewed how artificial intelligence (AI) models can help doctors better detect and understand aggressive prostate cancer using magnetic resonance imaging scans. We found that while these AI tools show promise, these tools need more testing and validation in different hospitals before these can be used widely in patient care.
Collapse
Affiliation(s)
- Sébastien Molière
- Department of Radiology, Hôpital de Hautepierre, Hôpitaux Universitaire de Strasbourg, Strasbourg, France; Breast and Thyroid Imaging Unit, Institut de cancérologie Strasbourg Europe, Strasbourg, France; IGBMC, Illkirch, France.
| | - Dimitri Hamzaoui
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hôpital, Quint Fonsegrives, France; IUCT-O, Toulouse, France
| | - Romain Mathieu
- Department of Urology, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), University of Rennes, Rennes, France
| | - Gaelle Fiard
- Department of Urology, CNRS, Grenoble INP, TIMC-IMAG, Grenoble Alpes University Hospital, Université Grenoble Alpes, Grenoble, France
| | - Michael Baboudjian
- Department of Urology, Assistance Publique des Hôpitaux de Marseille, Hôpital Nord, Marseille, France
| | - Benjamin Granger
- Public Health Department, INSERM, IPLESP, AP-HP, Pitie-Salpetriere Hospital, Sorbonne Universite, Paris, France
| | - Morgan Roupret
- Urology, GRC 5 Predictive Onco-Uro, AP-HP, Pitie-Salpetriere Hospital, Sorbonne University, Paris, France
| | - Hervé Delingette
- Inria, Epione Team, Sophia Antipolis, Université Côte d'Azur, Nice, France
| | - Raphaele Renard-Penna
- Department of Radiology, GRC 5 Predictive Onco-Uro, AP-HP, Pitie-Salpetriere Hospital, Sorbonne University, Paris, France
| |
Collapse
|
3
|
Talyshinskii A, Hameed BMZ, Ravinder PP, Naik N, Randhawa P, Shah M, Rai BP, Tokas T, Somani BK. Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management. Cancers (Basel) 2024; 16:1809. [PMID: 38791888 PMCID: PMC11119252 DOI: 10.3390/cancers16101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The aim was to analyze the current state of deep learning (DL)-based prostate cancer (PCa) diagnosis with a focus on magnetic resonance (MR) prostate reconstruction; PCa detection/stratification/reconstruction; positron emission tomography/computed tomography (PET/CT); androgen deprivation therapy (ADT); prostate biopsy; associated challenges and their clinical implications. METHODS A search of the PubMed database was conducted based on the inclusion and exclusion criteria for the use of DL methods within the abovementioned areas. RESULTS A total of 784 articles were found, of which, 64 were included. Reconstruction of the prostate, the detection and stratification of prostate cancer, the reconstruction of prostate cancer, and diagnosis on PET/CT, ADT, and biopsy were analyzed in 21, 22, 6, 7, 2, and 6 studies, respectively. Among studies describing DL use for MR-based purposes, datasets with magnetic field power of 3 T, 1.5 T, and 3/1.5 T were used in 18/19/5, 0/1/0, and 3/2/1 studies, respectively, of 6/7 studies analyzing DL for PET/CT diagnosis which used data from a single institution. Among the radiotracers, [68Ga]Ga-PSMA-11, [18F]DCFPyl, and [18F]PSMA-1007 were used in 5, 1, and 1 study, respectively. Only two studies that analyzed DL in the context of DT met the inclusion criteria. Both were performed with a single-institution dataset with only manual labeling of training data. Three studies, each analyzing DL for prostate biopsy, were performed with single- and multi-institutional datasets. TeUS, TRUS, and MRI were used as input modalities in two, three, and one study, respectively. CONCLUSION DL models in prostate cancer diagnosis show promise but are not yet ready for clinical use due to variability in methods, labels, and evaluation criteria. Conducting additional research while acknowledging all the limitations outlined is crucial for reinforcing the utility and effectiveness of DL-based models in clinical settings.
Collapse
Affiliation(s)
- Ali Talyshinskii
- Department of Urology and Andrology, Astana Medical University, Astana 010000, Kazakhstan;
| | | | - Prajwal P. Ravinder
- Department of Urology, Kasturba Medical College, Mangaluru, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Nithesh Naik
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Princy Randhawa
- Department of Mechatronics, Manipal University Jaipur, Jaipur 303007, India;
| | - Milap Shah
- Department of Urology, Aarogyam Hospital, Ahmedabad 380014, India;
| | - Bhavan Prasad Rai
- Department of Urology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK;
| | - Theodoros Tokas
- Department of Urology, Medical School, University General Hospital of Heraklion, University of Crete, 14122 Heraklion, Greece;
| | - Bhaskar K. Somani
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
- Department of Urology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Leiser F, Rank S, Schmidt-Kraepelin M, Thiebes S, Sunyaev A. Medical informed machine learning: A scoping review and future research directions. Artif Intell Med 2023; 145:102676. [PMID: 37925206 DOI: 10.1016/j.artmed.2023.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/15/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023]
Abstract
Combining domain knowledge (DK) and machine learning is a recent research stream to overcome multiple issues like limited explainability, lack of data, and insufficient robustness. Most approaches applying informed machine learning (IML), however, are customized to solve one specific problem. This study analyzes the status of IML in medicine by conducting a scoping literature review based on an existing taxonomy. We identified 177 papers and analyzed them regarding the used DK, the implemented machine learning model, and the motives for performing IML. We find an immense role of expert knowledge and image data in medical IML. We then provide an overview and analysis of recent approaches and supply five directions for future research. This review can help develop future medical IML approaches by easily referencing existing solutions and shaping future research directions.
Collapse
Affiliation(s)
- Florian Leiser
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sascha Rank
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Scott Thiebes
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ali Sunyaev
- Department of Economics and Management, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
5
|
Shoukat A, Akbar S, Hassan SA, Iqbal S, Mehmood A, Ilyas QM. Automatic Diagnosis of Glaucoma from Retinal Images Using Deep Learning Approach. Diagnostics (Basel) 2023; 13:diagnostics13101738. [PMID: 37238222 DOI: 10.3390/diagnostics13101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Glaucoma is characterized by increased intraocular pressure and damage to the optic nerve, which may result in irreversible blindness. The drastic effects of this disease can be avoided if it is detected at an early stage. However, the condition is frequently detected at an advanced stage in the elderly population. Therefore, early-stage detection may save patients from irreversible vision loss. The manual assessment of glaucoma by ophthalmologists includes various skill-oriented, costly, and time-consuming methods. Several techniques are in experimental stages to detect early-stage glaucoma, but a definite diagnostic technique remains elusive. We present an automatic method based on deep learning that can detect early-stage glaucoma with very high accuracy. The detection technique involves the identification of patterns from the retinal images that are often overlooked by clinicians. The proposed approach uses the gray channels of fundus images and applies the data augmentation technique to create a large dataset of versatile fundus images to train the convolutional neural network model. Using the ResNet-50 architecture, the proposed approach achieved excellent results for detecting glaucoma on the G1020, RIM-ONE, ORIGA, and DRISHTI-GS datasets. We obtained a detection accuracy of 98.48%, a sensitivity of 99.30%, a specificity of 96.52%, an AUC of 97%, and an F1-score of 98% by using the proposed model on the G1020 dataset. The proposed model may help clinicians to diagnose early-stage glaucoma with very high accuracy for timely interventions.
Collapse
Affiliation(s)
- Ayesha Shoukat
- Department of Computer Science, Riphah International University, Faisalabad Campus, Faisalabad 44000, Pakistan
| | - Shahzad Akbar
- Department of Computer Science, Riphah International University, Faisalabad Campus, Faisalabad 44000, Pakistan
| | - Syed Ale Hassan
- Department of Computer Science, Riphah International University, Faisalabad Campus, Faisalabad 44000, Pakistan
| | - Sajid Iqbal
- Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Abid Mehmood
- Department of Management Information Systems, College of Business Administration, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Qazi Mudassar Ilyas
- Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
6
|
Belue MJ, Harmon SA, Lay NS, Daryanani A, Phelps TE, Choyke PL, Turkbey B. The Low Rate of Adherence to Checklist for Artificial Intelligence in Medical Imaging Criteria Among Published Prostate MRI Artificial Intelligence Algorithms. J Am Coll Radiol 2023; 20:134-145. [PMID: 35922018 PMCID: PMC9887098 DOI: 10.1016/j.jacr.2022.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the rigor, generalizability, and reproducibility of published classification and detection artificial intelligence (AI) models for prostate cancer (PCa) on MRI using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines, a 42-item checklist that is considered a measure of best practice for presenting and reviewing medical imaging AI research. MATERIALS AND METHODS This review searched English literature for studies proposing PCa AI detection and classification models on MRI. Each study was evaluated with the CLAIM checklist. The additional outcomes for which data were sought included measures of AI model performance (eg, area under the curve [AUC], sensitivity, specificity, free-response operating characteristic curves), training and validation and testing group sample size, AI approach, detection versus classification AI, public data set utilization, MRI sequences used, and definition of gold standard for ground truth. The percentage of CLAIM checklist fulfillment was used to stratify studies into quartiles. Wilcoxon's rank-sum test was used for pair-wise comparisons. RESULTS In all, 75 studies were identified, and 53 studies qualified for analysis. The original CLAIM items that most studies did not fulfill includes item 12 (77% no): de-identification methods; item 13 (68% no): handling missing data; item 15 (47% no): rationale for choosing ground truth reference standard; item 18 (55% no): measurements of inter- and intrareader variability; item 31 (60% no): inclusion of validated interpretability maps; item 37 (92% no): inclusion of failure analysis to elucidate AI model weaknesses. An AUC score versus percentage CLAIM fulfillment quartile revealed a significant difference of the mean AUC scores between quartile 1 versus quartile 2 (0.78 versus 0.86, P = .034) and quartile 1 versus quartile 4 (0.78 versus 0.89, P = .003) scores. Based on additional information and outcome metrics gathered in this study, additional measures of best practice are defined. These new items include disclosure of public dataset usage, ground truth definition in comparison to other referenced works in the defined task, and sample size power calculation. CONCLUSION A large proportion of AI studies do not fulfill key items in CLAIM guidelines within their methods and results sections. The percentage of CLAIM checklist fulfillment is weakly associated with improved AI model performance. Additions or supplementations to CLAIM are recommended to improve publishing standards and aid reviewers in determining study rigor.
Collapse
Affiliation(s)
- Mason J Belue
- Medical Research Scholars Program Fellow, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie A Harmon
- Staff Scientist, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nathan S Lay
- Staff Scientist, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Asha Daryanani
- Intramural Research Training Program Fellow, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tim E Phelps
- Postdoctoral Fellow, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter L Choyke
- Artificial Intelligence Resource, Chief of Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Baris Turkbey
- Senior Clinician/Director, Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|