1
|
Bao M, Xu Y, Wei G, Bai M, Wang J, Feng L. The MYC Gene RrbHLH105 Contributes to Salt Stress-Induced Geraniol in Rose by Regulating Trehalose-6-Phosphate Signalling. PLANT, CELL & ENVIRONMENT 2025; 48:1947-1962. [PMID: 39526398 DOI: 10.1111/pce.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Rose (Rosa rugosa) is an important perfume plant, but its cultivation is significantly constrained by salt stress. Terpenes represent the most abundant volatile aromatic compounds in roses, yet little is known about how terpene metabolism responds to salt stress. In this study, salt-treated rose petals presented significant accumulation of monoterpenes, including geraniol, due to the disruption of jasmonic acid (JA) biosynthesis and signalling. Overexpression and silencing analyses revealed a MYC transcription factor involved in JA signalling (RrbHLH105) as a repressor of geraniol biosynthesis. RrbHLH105 was shown to activate the trehalose-6-phosphate synthase genes RrTPS5 and RrTPS8 by binding to the E-box (5'-CANNTG-3'). The increased trehalose-6-phosphate content and decreased geraniol content in rose petals overexpressing TPS5 or RrTPS8, along with the high accumulation of geraniol in petals where both RrbHLH105 and TPSs were cosilenced, indicate that trehalose signalling plays a role in the negative regulation of geraniol accumulation via the RrbHLH105-TPS module. In summary, the suppression of RrbHLH105 by salt stress leads to excessive geraniol accumulation through the inhibition of both RrbHLH105-mediated JA signalling and RrTPS-mediated trehalose signalling in rose petals. Additionally, this study highlights the emerging role of RrbHLH105 as a critical integrator of JA and trehalose signalling crosstalk.
Collapse
Affiliation(s)
- Mingyue Bao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Mengjuan Bai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhang Z, Hu W, Yu A, Bi H, Wang J, Wang X, Kuang H, Wang M. Physicochemical properties, health benefits, and applications of the polysaccharides from Rosa rugosa Thunb.: A review. Int J Biol Macromol 2024; 282:136975. [PMID: 39476919 DOI: 10.1016/j.ijbiomac.2024.136975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Rosa rugosa Thunb. (R. rugosa) has been used as food and medicine and not just as ornamental plant for nearly a thousand years, its nutritional and medicinal value have been recognized by people. It contains a variety of biological active ingredients that are beneficial to the human body. R. rugosa polysaccharides are also one of the main bioactive ingredients, which have many health benefits such as anti-diabetes, antioxidation, anti-inflammation, anti-tumour, moisture-preserving and anti-alcoholic liver disease. This review summarizes the extraction, purification, structural characteristics, health benefits, and structure-activity relationships of R. rugosa polysaccharides. In addition, current and potential applications of R. rugosa polysaccharides are analyzed and supplemented, hoping to provide some valuable insights for further research and development of functional food additives, nutritional supplements, additives for daily chemical products, and even pharmaceuticals.
Collapse
Affiliation(s)
- Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haizheng Bi
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Jingyuan Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Xingyu Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
3
|
Wei G, Xu M, Shi X, Wang Y, Shi Y, Wang J, Feng L. Integrative analysis of miRNA profile and degradome reveals post-transcription regulation involved in fragrance formation of Rosa rugosa. Int J Biol Macromol 2024; 279:135266. [PMID: 39244114 DOI: 10.1016/j.ijbiomac.2024.135266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Rosa rugosa is renowned for its fragrant essential oils (EOs) including the primary volatile compounds such as terpenes (geraniol and citronellol) and 2-phenylethanol. While the role of miRNAs in plant secondary metabolism has been explored, their involvement in EOs metabolism remains largely unknown. Sequencing of the petals of R. rugosa identified 383 conserved miRNAs and 625 novel miRNAs including 53 miRNAs differentially expressed in a strong fragrance variety R. rugosa 'White Purple Branch'. Degradome sequencing predicted 1969 targets enriched in GO terms involved in the negative regulation of macromolecule metabolic process. Furthermore, 122 targets of differentially expressed miRNAs were enriched in phenylalanine metabolism and other KEGG pathways. A post-transcriptional regulation network of 52 miRNAs and 70 miRNA-transcription factor modules target terpene and 2-phenylethanol biosynthesis pathways. Six interactions including miR535f-RrHMGR, NOV146-RrNUDX1, miR166l-RrHY5 and miR156c-RrSPL2 were validated using RNA ligase-mediated RACE. Sequence alignment revealed that the NOV146-RrNUDX1 was conserved in the Rosa genus. Moreover, weaker silencing of RrNUDX1 by NOV146 contributed to the stronger fragrance of R. rugosa. These findings offer a comprehensive understanding of the post-transcriptional regulation involved in essential oil biosynthesis and identify candidate miRNAs for further genetic improvement of EO yields in R. rugosa.
Collapse
Affiliation(s)
- Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengmeng Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xinwei Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yue Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuqing Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Cheng L, Tu G, Ma H, Zhang K, Wang X, Zhou H, Gao J, Zhou J, Yu Y, Xu Q. Alternative splicing of CsbHLH133 regulates geraniol biosynthesis in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:598-614. [PMID: 39207906 DOI: 10.1111/tpj.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Geraniol is one of the most abundant aromatic compounds in fresh tea leaves and contributes to the pleasant odor of tea products. Additionally, it functions as an airborne signal that interacts with other members of the ecosystem. To date, the regulation of the geraniol biosynthesis in tea plants remains to be investigated. In this study, a correlation test of the content of geraniol and its glycosides with gene expression data revealed that nudix hydrolase, CsNudix26, and its transcription factor, CsbHLH133 are involved in geraniol biosynthesis. In vitro enzyme assays and metabolic analyses of genetically modified tea plants confirmed that CsNudix26 is responsible for the formation of geraniol. Yeast one-hybrid, dual-luciferase reporter, and EMSA assays were used to verify the binding of CsbHLH133 to the CsNudix26 promoter. Overexpression of CsbHLH133 in tea leaves enhanced CsNudix26 expression and geraniol accumulation, whereas CsbHLH133 silencing reduced CsNudix26 transcript levels and geraniol content. Interestingly, CsbHLH133-AS, produced by alternative splicing, was discovered and proved to be the primary transcript expressed in response to various environmental stresses. Furthermore, geraniol release was found to be affected by various factors that alter the expression patterns of CsbHLH133 and CsbHLH133-AS. Our findings indicate that distinct transcript splicing patterns of CsbHLH133 regulate geraniol biosynthesis in tea plants in response to different regulatory factors.
Collapse
Affiliation(s)
- Long Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gefei Tu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huicong Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Keyi Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinyu Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haozhe Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingwen Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingshan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
5
|
Jiang F, Liu D, Dai J, Yang T, Zhang J, Che D, Fan J. Cloning and Functional Characterization of 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase (LiMCT) Gene in Oriental Lily (Lilium 'Sorbonne'). Mol Biotechnol 2024; 66:56-67. [PMID: 37014586 DOI: 10.1007/s12033-023-00729-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
2-C-methyl-D-erythritol-phosphate cytidylyltransferase (MCT) is a key enzyme in the MEP pathway of monoterpene synthesis, catalyzing the generation of 4- (5'-pyrophosphate cytidine)-2-C-methyl-D-erythritol from 2-C-methyl-D-erythritol-4-phosphate. We used homologous cloning strategy to clone gene, LiMCT, in the MEP pathway that may be involved in the regulation of floral fragrance synthesis in the Lilium oriental hybrid 'Sorbonne.' The full-length ORF sequence was 837 bp, encoding 278 amino acids. Bioinformatics analysis showed that the relative molecular weight of LiMCT protein is 68.56 kD and the isoelectric point (pI) is 5.12. The expression pattern of LiMCT gene was found to be consistent with the accumulation sites and emission patterns of floral fragrance monoterpenes in transcriptome data (unpublished). Subcellular localization indicated that the LiMCT protein is located in chloroplasts, which is consistent with the location of MEP pathway genes functioning in plastids to produce isoprene precursors. Overexpression of LiMCT in Arabidopsis thaliana affected the expression levels of MEP and MVA pathway genes, suggesting that overexpression of the LiMCT in A. thaliana affected the metabolic flow of C5 precursors of two different terpene synthesis pathways. The expression of the monoterpene synthase AtTPS14 was elevated nearly fourfold in transgenic A. thaliana compared with the control, and the levels of carotenoids and chlorophylls, the end products of the MEP pathway, were significantly increased in the leaves at full bloom, indicating that LiMCT plays an important role in regulating monoterpene synthesis and in the synthesis of other isoprene-like precursors in transgenic A. thaliana flowers. However, the specific mechanism of LiMCT in promoting the accumulation of isoprene products of the MEP pathway and the biosynthesis of floral monoterpene volatile components needs further investigation.
Collapse
Affiliation(s)
- Fan Jiang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Dongying Liu
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jingqi Dai
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Yang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Daidi Che
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jinping Fan
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
7
|
Quan W, Jin J, Qian C, Li C, Zhou H. Characterization of volatiles in flowers from four Rosa chinensis cultivars by HS-SPME-GC × GC-QTOFMS. FRONTIERS IN PLANT SCIENCE 2023; 14:1060747. [PMID: 37251764 PMCID: PMC10211245 DOI: 10.3389/fpls.2023.1060747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
Rosa chinensis cultivars with volatile aromas are important resources in the perfume industry. The four rose cultivars introduced to Guizhou province are rich in volatile substances. In this study, volatiles from four Rosa chinensis cultivars were extracted using headspace-solid phase microextraction (HS-SPME), and analyzed with two-dimensional gas chromatography quadrupole time of flight mass spectrometry (GC × GC-QTOFMS). A total of 122 volatiles were identified; the main compounds in these samples were benzyl alcohol, phenylethyl alcohol, citronellol, beta-myrcene and limonene. A total of 68, 78, 71, and 56 volatile compounds were identified in Rosa 'Blue River' (RBR), Rosa 'Crimson Glory' (RCG), Rosa 'Pink Panther' (RPP), and Rosa 'Funkuhr' (RF) samples, respectively. The total volatile contents were in the following order: RBR > RCG > RPP > RF. Four cultivars exhibited similar volatility profiles, with alcohols, alkanes, and esters as the major chemical groups, followed by aldehydes, aromatic hydrocarbons, ketones, benzene, and other compounds. Alcohols and aldehydes were quantitatively the two most abundant chemical groups that included the highest number and highest content of compounds. Different cultivars have different aromas, and RCG had high contents of phenyl acetate, rose oxide, trans-rose oxide, phenylethyl alcohol and 1,3,5-trimethoxybenzene, characterized by floral and rose descriptors. RBR contained a high content of phenylethyl alcohol, and RF contained a high content of 3,5-dimethoxytoluene. Hierarchical cluster analysis (HCA) of all volatiles showed that the three cultivars (RCG, RPP, and RF) had similar volatile characteristics and were significantly different from RBR. Differential metabolites among cultivars were screened based on the OPLS-DA model, and there were six main enriched pathways of differential metabolites: biosynthesis of secondary metabolites, monoterpenoid biosynthesis, metabolic pathways, limonene and pinene degradation, sesquiterpenoid and triterpenoid biosynthesis, and alpha-linolenic acid metabolism. The biosynthesis of secondary metabolites is the most differential metabolic pathway.
Collapse
Affiliation(s)
- Wenxuan Quan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Jing Jin
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang, China
| | - Chenyu Qian
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Chaochan Li
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Hongying Zhou
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang, China
| |
Collapse
|
8
|
Liu Y, Zhang W, Wang Y, Xie L, Zhang Q, Zhang J, Li W, Wu M, Cui J, Wang W, Zhang Z. Nudix hydrolase 14 influences plant development and grain chalkiness in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1054917. [PMID: 36570941 PMCID: PMC9773146 DOI: 10.3389/fpls.2022.1054917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Nudix hydrolases (NUDX) can hydrolyze a wide range of organic pyrophosphates and are widely distributed in various organisms. Previous studies have shown that NUDXs are extensively involved in biotic and abiotic stress responses in different plant species; however, the role of NUDXs in plant growth and development remains largely unknown. In the present study, we identified and characterized OsNUDX14 localized in the mitochondria in rice. Results showed that OsNUDX14 is constitutively expressed in various tissues and most strongly expressed in mature leaves. We used CRISPR/Cas9 introducing mutations that editing OsNUDX14 and its encoding product. OsNUDX14-Cas9 (nudx14) lines presented early flowering and a larger flag leaf angle during the reproductive stage. In addition, OsNUDX14 affected grain chalkiness in rice. Furthermore, transcript profile analysis indicated that OsNUDX14 is associated with lignin biosynthesis in rice. Six major haplotypes were identified by six OsNUDX14 missense mutations, including Hap_1 to Hap_6. Accessions having the Hap_5 allele were geographically located mainly in South and Southeast Asia with a low frequency in the Xian/indica subspecies. This study revealed that OsNUDX14 is associated with plant development and grain chalkiness, providing a potential opportunity to optimize plant architecture and quality for crop breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wenyi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Morphological, anatomical, ultrastructural, and histochemical study of flowers and nectaries of Iris sibirica L. Micron 2022; 158:103288. [DOI: 10.1016/j.micron.2022.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
|