1
|
Can H, Dogan I, Tabanli F, Uras ME, Hocaoglu-Ozyigit A, Ozyigit II. Genome-wide screening of mitogen-activated protein kinase (MAPK) gene family and expression profile under heavy metal stress in Solanum lycopersicum. Biotechnol Lett 2025; 47:27. [PMID: 39969695 DOI: 10.1007/s10529-025-03567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/03/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
MAPKs are one of the essential signal transduction complexes which are responsible for the perception of abiotic stress and for the producing of related transcripts for responding to abiotic stress. For systematical analyzes of the mitogen-activated protein (MAP) kinase gene families and their expression profiles in Solanum lycopersicum L. exposed to diverse heavy metal stresses, 17 SlMAPK genes were studied in comparison with their 159 orthologs from various plant species. The result of phylogenetic analysis revealed that SlMAPKs were divided into four different subgroups (A, B, C, and D) based on their nucleic acid and protein sequence alignments. SlMAPKs including A, B and C group had lower molecular weights and more hydrophobic structures than D group SlMAPKs, while possible extra phosphorylation sites predicted in D-group SLMAPKs. 24 cis regulating elements such as Box 4, TATA-box, ABRE and CAAT-box were detected in their upstream parts of DNA sequences. Also, it was determined that SlMAPKs show interactions with important proteins such as Guanine nucleotide-binding protein beta subunit, heterotrimeric G-protein, protein phosphatase 2C and HY5. The results from our gene expression analyzes, significant increases were found in the expressions of the selected SLMAPK gene with applications of a range of increasing heavy metal concentrations (e.g., by the application of the 400 mM Ni + Pb exposure, a 16-fold increase in the expression of SlMAPK gene was noted). Overall, SlMAPK genes and proteins known were re-evaluated, and the SlMAPKs interactions with some other important proteins were observed. Also, some predictions about the extra phosphorylation sites of SlMAPKs having effects on their functions were done. In addition, the expression levels of SlMAPK genes were monitored under different levels of heavy metal stress exposures.
Collapse
Affiliation(s)
- Hasan Can
- Eregli Faculty of Agriculture, Necmettin Erbakan University, 42310, Konya, Turkey.
| | - Ilhan Dogan
- Department of Medical Services and Techniques, Akyazi Vocational School of Health Services, Sakarya University of Applied Sciences, 54400, Sakarya, Turkey
| | - Fatih Tabanli
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Kadikoy, Istanbul, Turkey
| | - Mehmet Emin Uras
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Halic University, 34060, Eyupsultan, Istanbul, Turkey
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Kadikoy, Istanbul, Turkey
| | - Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Kadikoy, Istanbul, Turkey
| |
Collapse
|
2
|
Li P, Zhang Y, Zhao C, Jiang M. Evolution of the Tóxicos en Levadura 63 (TL63) gene family in plants and functional characterization of Arabidopsis thaliana TL63 under oxidative stress. PLANTA 2023; 258:87. [PMID: 37750983 DOI: 10.1007/s00425-023-04243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
MAIN CONCLUSION TL63 orthologs were angiosperm specific and had undergone motifs loss and gain, and increased purifying selection. AtTL63 was involved in the response of yeast and Arabidopsis plants to oxidative stress. The Tóxicos en Levadura (TL) family, a class of E3 ubiquitin ligases with typical RING-H2 type zinc finger structure, plays a pivotal role in mediating physiological processes and responding to stress in plants. However, the evolution and function of TL63 remain unclear. In this study, TL63 homologs were dated roughly back to the origin of land plants and confirmed to have subjected to the gain and loss of motifs and increased purifying selection. Phylogenetic analysis displayed that 279 TL63s could be divided into four main clades (Clade A-D). Notably, the ancestral tandem TL40/41 cluster contributed to the expansion of modern Brassicaceae TL40/41. The substitution rate tests revealed that the TL63 lineage was evidently different from other lineages. The codon usage index exhibited that monocotyledons preferred to use not A3s and T3s, but C3s, G3s, CAI, CBI and Fop. Sequence analysis showed that the TL63 homologs had conserved TM and GLD motifs and RING-H2 domain whose key amino acid residues accounted for the high average abundance. Particularly, Arabidopsis thaliana TL63 (AtTL63) was located in the nuclei, cell membranes and peroxisomes and expressed universally and significantly throughout A. thaliana development. Under H2O2 treatment, low or moderate expression of the AtTL63 held beneficial effects on the growth and viability of yeast cells and the mutation or overexpression of the AtTL63 positively affected the growth of A. thaliana plants. In brief, this study could supply useful insight into the evolution of the plant TL63s and the AtTL63 functions under oxidative stress.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuxin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Changling Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| |
Collapse
|
3
|
Zhang Y, Li P, Niu Y, Zhang Y, Wen G, Zhao C, Jiang M. Evolution of the WRKY66 Gene Family and Its Mutations Generated by the CRISPR/Cas9 System Increase the Sensitivity to Salt Stress in Arabidopsis. Int J Mol Sci 2023; 24:3071. [PMID: 36834483 PMCID: PMC9959582 DOI: 10.3390/ijms24043071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Group Ⅲ WRKY transcription factors (TFs) play pivotal roles in responding to the diverse abiotic stress and secondary metabolism of plants. However, the evolution and function of WRKY66 remains unclear. Here, WRKY66 homologs were traced back to the origin of terrestrial plants and found to have been subjected to both motifs' gain and loss, and purifying selection. A phylogenetic analysis showed that 145 WRKY66 genes could be divided into three main clades (Clade A-C). The substitution rate tests indicated that the WRKY66 lineage was significantly different from others. A sequence analysis displayed that the WRKY66 homologs had conserved WRKY and C2HC motifs with higher proportions of crucial amino acid residues in the average abundance. The AtWRKY66 is a nuclear protein, salt- and ABA- inducible transcription activator. Simultaneously, under salt stress and ABA treatments, the superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities, as well as the seed germination rates of Atwrky66-knockdown plants generated by the clustered, regularly interspaced, short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system, were all lower than those of wild type (WT) plants, but the relative electrolyte leakage (REL) was higher, indicating the increased sensitivities of the knockdown plants to the salt stress and ABA treatments. Moreover, RNA-seq and qRT-PCR analyses revealed that several regulatory genes in the ABA-mediated signaling pathway involved in stress response of the knockdown plants were significantly regulated, being evidenced by the more moderate expressions of the genes. Therefore, the AtWRKY66 likely acts as a positive regulator in the salt stress response, which may be involved in an ABA-mediated signaling pathway.
Collapse
Affiliation(s)
- Youze Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuqian Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuxin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guosong Wen
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Changling Zhao
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
4
|
Jiang M, Wen G, Zhao C. Phylogeny and evolution of plant Phytochrome Interacting Factors (PIFs) gene family and functional analyses of PIFs in Brachypodium distachyon. PLANT CELL REPORTS 2022; 41:1209-1227. [PMID: 35218399 DOI: 10.1007/s00299-022-02850-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Plant PIFs have been characterized, WGDs contributed to the expansion of class II PIFs; BdPIFs localized in the nucleus; BdPIF4/5C most likely response to high temperature and light stress. Phytochrome interacting factors (PIFs) belong to a small subset of basic helix-loop-helix (bHLH) transcription factors (TFs). As cellular signaling hubs, PIFs integrate multiple external and internal signals to orchestrate the regulation of the transcriptional network, thereby actuating the pleiotropic aspects of downstream morphogenesis. Nevertheless, the origin, phylogeny and function of plant PIFs are not well understood. To elucidate their evolution history and biological function, the comprehensive genomic analysis of the PIF genes was conducted using 40 land plant genomes plus additionally four alga lineages and also performed their gene organizations, sequence features and expression patterns in different subfamilies. In this study, phylogenetic analysis displayed that 246 PIF gene members retrieved from all embryophytes could be divided into three main clades, which were further felled into five distinct classes (Class I-V). The duplications of Class II PIFs were associated specially with whole genome duplication (WGD) events during the plant evolution process. Sequence analysis showed that PIF proteins had a conserved APB motif, and its crucial amino acid residues were relatively high proportion in the average abundance. As expected, subcellular localization analysis revealed that all BdPIF proteins were localized to the nucleus. Especially, BdPIF4/5C showed the highest expression level at high temperature, and the most significant hypocotyl elongation phenotype of overexpression of BdPIFs in Arabidopsis, which was consistent with the function and phenotype of AtPIF4. In brief, our findings provide a novel perspective on the origin and evolutionary history of plant PIFs, and lays a foundation for further investigation on its functions in plant growth and development.
Collapse
Affiliation(s)
- Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences (CAS), Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Guosong Wen
- Research and Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Changling Zhao
- Research and Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| |
Collapse
|
5
|
Jiang M, Li S, Zhao C, Zhao M, Xu S, Wen G. Identification and analysis of sucrose synthase gene family associated with polysaccharide biosynthesis in Dendrobium catenatum by transcriptomic analysis. PeerJ 2022; 10:e13222. [PMID: 35402092 PMCID: PMC8992646 DOI: 10.7717/peerj.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Dendrobium catenatum is a valuable traditional medicinal herb with high commercial value. D. catenatum stems contain abundant polysaccharides which are one of the main bioactive components. However, although some genes related to the synthesis of the polysaccharides have been reported, more key genes need to be further elucidated. Results In this study, the contents of polysaccharides and mannose in D. catenatum stems at four developmental stages were compared, and the stems' transcriptomes were analyzed to explore the synthesis mechanism of the polysaccharides. Many genes involved in starch and sucrose metabolisms were identified by KEGG pathway analysis. Further analysis found that sucrose synthase (SUS; EC 2.4.1.13) gene maybe participated in the polysaccharide synthesis. Hence, we further investigated the genomic characteristics and evolution relationships of the SUS family in plants. The result suggested that the SUS gene of D. catenatum (DcSUS) had undergone the expansion characterized by tandem duplication which might be related to the enrichment of the polysaccharides in D. catenatum stems. Moreover, expression analyses of the DcSUS displayed significant divergent patterns in different tissues and could be divided into two main groups in the stems with four developmental stages. Conclusion In general, our results revealed that DcSUS is likely involved in the metabolic process of the stem polysaccharides, providing crucial clues for exploiting the key genes associated with the polysaccharide synthesis.
Collapse
Affiliation(s)
- Min Jiang
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), School of Life Sciences, Fudan University, Shanghai, China
| | - Shangyun Li
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Changling Zhao
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Mingfu Zhao
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shaozhong Xu
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Guosong Wen
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Mitogen-Activated Protein Kinase and Substrate Identification in Plant Growth and Development. Int J Mol Sci 2022; 23:ijms23052744. [PMID: 35269886 PMCID: PMC8911294 DOI: 10.3390/ijms23052744] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that play essential roles in plant growth, development, and defense response. However, the molecular mechanisms underlying MAPK cascades are still very elusive, largely because of our poor understanding of how they relay the signals. The MAPK cascade is composed of MAPK, MAPKK, and MAPKKK. They transfer signals through the phosphorylation of MAPKKK, MAPKK, and MAPK in turn. MAPKs are organized into a complex network for efficient transmission of specific stimuli. This review summarizes the research progress in recent years on the classification and functions of MAPK cascades under various conditions in plants, especially the research status and general methods available for identifying MAPK substrates, and provides suggestions for future research directions.
Collapse
|
7
|
Li N, Jiang M, Li P, Li X. Identification, expression, and functional analysis of Hsf and Hsp20 gene families in Brachypodium distachyon under heat stress. PeerJ 2021; 9:e12267. [PMID: 34703676 PMCID: PMC8489411 DOI: 10.7717/peerj.12267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background The heat shock factor (Hsf) and small heat shock protein (sHsp, also called Hsp20) complex has been identified as a primary component in the protection of plant cells from ubiquitous stresses, particularly heat stress. Our study aimed to characterize and analyze the Hsf and Hsp genes in Brachypodium distachyon, an annual temperate grass and model plant in cereal and grass studies. Results We identified 24 Hsf and 18 Hsp20 genes in B. distachyon and explored their evolution in gene organization, sequence features, chromosomal localization, and gene duplication. Our phylogenetic analysis showed that BdHsfs could be divided into three categories and BdHsp20s into ten subfamilies. Further analysis showed that the 3’UTR length of BdHsp20 genes had a negative relationship with their expression under heat stress. Expression analyses indicated that BdHsp20s and BdHsfs were strongly and rapidly induced by high-temperature treatment. Additionally, we constructed a complex regulatory network based on their expression patterns under heat stress. Morphological analysis suggested that the overexpression of five BdHsp20 genes enhanced the seed germination rate and decreased cell death under high temperatures. Conclusion Ultimately, our study provided important evolutionary and functional characterizations for future research on the regulatory mechanisms of BdHsp20s and BdHsfs in herbaceous plants under environmental stress.
Collapse
Affiliation(s)
- Na Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.,College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xiwen Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.,College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|