1
|
Pokharel S, Barasa K, Pratyush P, KC DB. PLM-DBPs: enhancing plant DNA-binding protein prediction by integrating sequence-based and structure-aware protein language models. Brief Bioinform 2025; 26:bbaf245. [PMID: 40439671 PMCID: PMC12121366 DOI: 10.1093/bib/bbaf245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/14/2025] [Accepted: 05/05/2025] [Indexed: 06/02/2025] Open
Abstract
DNA-binding proteins (DBPs) play a crucial role in gene regulation, development, and environmental responses across plants, animals, and microorganisms. Existing DBP prediction methods are largely limited to sequence information, whether through handcrafted features or sequence-based protein language models (PLMs), overlooking structural cues critical to protein function. In addition, most existing tools are trained for general DBP predictions, which are often not accurate for plant-specific DBPs due to the unique structural and functional properties of plant proteins. Our work introduces PLM-DBPs, a deep learning framework that integrates both sequence-based and structure-aware representations to enhance DBP prediction in plants. We evaluated several state-of-the-art PLMs to extract high-dimensional protein representations and experimented with various fusion strategies to validate the complementary information between the various representations. Our final model, a fusion of sequence-based and structure-aware ANN models, achieves a notable improvement in predicting DBPs in plants outperforming previous state-of-the-art models. Although sequence-based PLMs already demonstrate strong performance in DBP prediction, our findings show that the integration of structural information further enhances predictive accuracy. This underscores the complementary nature of structural representations and establishes PLM-DBPs as a robust tool for advancing plant research and agricultural innovation. The proposed model and other resources are publicly available at https://github.com/suresh-pokharel/PLM-DBPs.
Collapse
Affiliation(s)
- Suresh Pokharel
- Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester 14623, NY, United States
| | - Kepha Barasa
- College of Computing, Michigan Technological University, Houghton 49931, MI, United States
| | - Pawel Pratyush
- Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester 14623, NY, United States
| | - Dukka B KC
- Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester 14623, NY, United States
| |
Collapse
|
2
|
He J, Zhang Y, Liu Y, Zhou Z, Li T, Zhang Y, Xie B. BCDB: A dual-branch network based on transformer for predicting transcription factor binding sites. Methods 2025; 234:141-151. [PMID: 39701486 DOI: 10.1016/j.ymeth.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024] Open
Abstract
Transcription factor binding sites (TFBSs) are critical in regulating gene expression. Precisely locating TFBSs can reveal the mechanisms of action of different transcription factors in gene transcription. Various deep learning methods have been proposed to predict TFBS; however, these models often need help demonstrating ideal performance under limited data conditions. Furthermore, these models typically have complex structures, which makes their decision-making processes difficult to transparentize. Addressing these issues, we have developed a framework named BCDB. This framework integrates multi-scale DNA information and employs a dual-branch output strategy. Integrating DNABERT, convolutional neural networks (CNN), and multi-head attention mechanisms enhances the feature extraction capabilities, significantly improving the accuracy of predictions. This innovative method aims to balance the extraction of global and local information, enhancing predictive performance while utilizing attention mechanisms to provide an intuitive way to explain the model's predictions, thus strengthening the overall interpretability of the model. Prediction results on 165 ChIP-seq datasets show that BCDB significantly outperforms other existing deep learning methods in terms of performance. Additionally, since the BCDB model utilizes transfer learning methods, it can transfer knowledge learned from many unlabeled data to specific cell line prediction tasks, allowing our model to achieve cross-cell line TFBS prediction. The source code for BCDB is available on https://github.com/ZhangLab312/BCDB.
Collapse
Affiliation(s)
- Jia He
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yupeng Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yuhang Liu
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Zhigan Zhou
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Tianhao Li
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Boqia Xie
- Department of Cardiology, Cardiovascualr Imaging Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Luo X, Chi ASY, Lin AH, Ong TJ, Wong L, Rahman CR. Benchmarking recent computational tools for DNA-binding protein identification. Brief Bioinform 2024; 26:bbae634. [PMID: 39657630 PMCID: PMC11630855 DOI: 10.1093/bib/bbae634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Identification of DNA-binding proteins (DBPs) is a crucial task in genome annotation, as it aids in understanding gene regulation, DNA replication, transcriptional control, and various cellular processes. In this paper, we conduct an unbiased benchmarking of 11 state-of-the-art computational tools as well as traditional tools such as ScanProsite, BLAST, and HMMER for identifying DBPs. We highlight the data leakage issue in conventional datasets leading to inflated performance. We introduce new evaluation datasets to support further development. Through a comprehensive evaluation pipeline, we identify potential limitations in models, feature extraction techniques, and training methods, and recommend solutions regarding these issues. We show that combining the predictions of the two best computational tools with BLAST-based prediction significantly enhances DBP identification capability. We provide this consensus method as user-friendly software. The datasets and software are available at https://github.com/Rafeed-bot/DNA_BP_Benchmarking.
Collapse
Affiliation(s)
- Xizi Luo
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Amadeus Song Yi Chi
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Andre Huikai Lin
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Tze Jet Ong
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | | |
Collapse
|
4
|
Pradhan UK, Meher PK, Naha S, Sharma NK, Agarwal A, Gupta A, Parsad R. DBPMod: a supervised learning model for computational recognition of DNA-binding proteins in model organisms. Brief Funct Genomics 2024; 23:363-372. [PMID: 37651627 DOI: 10.1093/bfgp/elad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
DNA-binding proteins (DBPs) play critical roles in many biological processes, including gene expression, DNA replication, recombination and repair. Understanding the molecular mechanisms underlying these processes depends on the precise identification of DBPs. In recent times, several computational methods have been developed to identify DBPs. However, because of the generic nature of the models, these models are unable to identify species-specific DBPs with higher accuracy. Therefore, a species-specific computational model is needed to predict species-specific DBPs. In this paper, we introduce the computational DBPMod method, which makes use of a machine learning approach to identify species-specific DBPs. For prediction, both shallow learning algorithms and deep learning models were used, with shallow learning models achieving higher accuracy. Additionally, the evolutionary features outperformed sequence-derived features in terms of accuracy. Five model organisms, including Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli, Homo sapiens and Mus musculus, were used to assess the performance of DBPMod. Five-fold cross-validation and independent test set analyses were used to evaluate the prediction accuracy in terms of area under receiver operating characteristic curve (auROC) and area under precision-recall curve (auPRC), which was found to be ~89-92% and ~89-95%, respectively. The comparative results demonstrate that the DBPMod outperforms 12 current state-of-the-art computational approaches in identifying the DBPs for all five model organisms. We further developed the web server of DBPMod to make it easier for researchers to detect DBPs and is publicly available at https://iasri-sg.icar.gov.in/dbpmod/. DBPMod is expected to be an invaluable tool for discovering DBPs, supplementing the current experimental and computational methods.
Collapse
Affiliation(s)
- Upendra K Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Prabina K Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Nitesh K Sharma
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, 1540 Alcazar Street, Los Angeles, CA 90033, USA
| | - Aarushi Agarwal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| |
Collapse
|
5
|
Pradhan UK, Meher PK, Naha S, Das R, Gupta A, Parsad R. ProkDBP: Toward more precise identification of prokaryotic DNA binding proteins. Protein Sci 2024; 33:e5015. [PMID: 38747369 PMCID: PMC11094783 DOI: 10.1002/pro.5015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/19/2024]
Abstract
Prokaryotic DNA binding proteins (DBPs) play pivotal roles in governing gene regulation, DNA replication, and various cellular functions. Accurate computational models for predicting prokaryotic DBPs hold immense promise in accelerating the discovery of novel proteins, fostering a deeper understanding of prokaryotic biology, and facilitating the development of therapeutics targeting for potential disease interventions. However, existing generic prediction models often exhibit lower accuracy in predicting prokaryotic DBPs. To address this gap, we introduce ProkDBP, a novel machine learning-driven computational model for prediction of prokaryotic DBPs. For prediction, a total of nine shallow learning algorithms and five deep learning models were utilized, with the shallow learning models demonstrating higher performance metrics compared to their deep learning counterparts. The light gradient boosting machine (LGBM), coupled with evolutionarily significant features selected via random forest variable importance measure (RF-VIM) yielded the highest five-fold cross-validation accuracy. The model achieved the highest auROC (0.9534) and auPRC (0.9575) among the 14 machine learning models evaluated. Additionally, ProkDBP demonstrated substantial performance with an independent dataset, exhibiting higher values of auROC (0.9332) and auPRC (0.9371). Notably, when benchmarked against several cutting-edge existing models, ProkDBP showcased superior predictive accuracy. Furthermore, to promote accessibility and usability, ProkDBP (https://iasri-sg.icar.gov.in/prokdbp/) is available as an online prediction tool, enabling free access to interested users. This tool stands as a significant contribution, enhancing the repertoire of resources for accurate and efficient prediction of prokaryotic DBPs.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical GeneticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Prabina Kumar Meher
- Division of Statistical GeneticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Sanchita Naha
- Division of Computer ApplicationsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Ritwika Das
- Division of Agricultural BioinformaticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Ajit Gupta
- Division of Statistical GeneticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Rajender Parsad
- ICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| |
Collapse
|
6
|
Wang K, Zeng X, Zhou J, Liu F, Luan X, Wang X. BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning. Brief Bioinform 2024; 25:bbae195. [PMID: 38701417 PMCID: PMC11066948 DOI: 10.1093/bib/bbae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for regulating genetic transcriptions by binding to transcription factor binding sites (TFBSs) in DNA sequences. Accurate predictions of TFBSs can contribute to the design and construction of metabolic regulatory systems based on TFs. Although various deep-learning algorithms have been developed for predicting TFBSs, the prediction performance needs to be improved. This paper proposes a bidirectional encoder representations from transformers (BERT)-based model, called BERT-TFBS, to predict TFBSs solely based on DNA sequences. The model consists of a pre-trained BERT module (DNABERT-2), a convolutional neural network (CNN) module, a convolutional block attention module (CBAM) and an output module. The BERT-TFBS model utilizes the pre-trained DNABERT-2 module to acquire the complex long-term dependencies in DNA sequences through a transfer learning approach, and applies the CNN module and the CBAM to extract high-order local features. The proposed model is trained and tested based on 165 ENCODE ChIP-seq datasets. We conducted experiments with model variants, cross-cell-line validations and comparisons with other models. The experimental results demonstrate the effectiveness and generalization capability of BERT-TFBS in predicting TFBSs, and they show that the proposed model outperforms other deep-learning models. The source code for BERT-TFBS is available at https://github.com/ZX1998-12/BERT-TFBS.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuan Zeng
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoli Luan
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinglong Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Jia P, Zhang F, Wu C, Li M. A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond. Brief Bioinform 2024; 25:bbae162. [PMID: 38739759 PMCID: PMC11089422 DOI: 10.1093/bib/bbae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/31/2024] [Indexed: 05/16/2024] Open
Abstract
Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.
Collapse
Affiliation(s)
- Pengzhen Jia
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Fuhao Zhang
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
- College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chaojin Wu
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| |
Collapse
|
8
|
Ma Y, Pei Y, Li C. Predictive Recognition of DNA-binding Proteins Based on Pre-trained Language Model BERT. J Bioinform Comput Biol 2023; 21:2350028. [PMID: 38248912 DOI: 10.1142/s0219720023500282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Identifying proteins is crucial for disease diagnosis and treatment. With the increase of known proteins, large-scale batch predictions are essential. However, traditional biological experiments being time-consuming and expensive are difficult to accomplish this task efficiently. Nevertheless, deep learning algorithms based on big data analysis have manifested potential in this aspect. In recent years, language representation models, especially BERT, have made significant advancements in natural language processing. In this paper, using three protein segmentation methods and three encoder numbers, nine BERT models with different sizes are constructed to predict whether known proteins are DNA-binding proteins or not. Furthermore, based on the concept of protein motifs, multi-scale convolutional networks are fused into the models to extract the local features of DNA-binding proteins. Finally, we find that the larger the number of encoders, the better the model predictions under the condition of considering each amino acid in the protein as a word. Our proposed algorithm achieves 81.88% sensitivity and 0.39 MCC value on the test set. Furthermore, it achieves 62.41% accuracy on the independent test set PDB2272. It is evident that our proposed method can be a tool to assist in the identification of DNA-binding proteins.
Collapse
Affiliation(s)
- Yue Ma
- School of Computer Science and Technology, Tiangong University, Tianjin, P. R. China
| | - Yongzhen Pei
- School of Mathematical Sciences, Tiangong University, Tianjin, P. R. China
| | - Changguo Li
- Department of Basic Science, Army Military Transportation University, Tianjin, P. R. China
| |
Collapse
|
9
|
Yan W, Tan L, Meng-Shan L, Sheng S, Jun W, Fu-an W. SaPt-CNN-LSTM-AR-EA: a hybrid ensemble learning framework for time series-based multivariate DNA sequence prediction. PeerJ 2023; 11:e16192. [PMID: 37810796 PMCID: PMC10559882 DOI: 10.7717/peerj.16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Biological sequence data mining is hot spot in bioinformatics. A biological sequence can be regarded as a set of characters. Time series is similar to biological sequences in terms of both representation and mechanism. Therefore, in the article, biological sequences are represented with time series to obtain biological time sequence (BTS). Hybrid ensemble learning framework (SaPt-CNN-LSTM-AR-EA) for BTS is proposed. Single-sequence and multi-sequence models are respectively constructed with self-adaption pre-training one-dimensional convolutional recurrent neural network and autoregressive fractional integrated moving average fused evolutionary algorithm. In DNA sequence experiments with six viruses, SaPt-CNN-LSTM-AR-EA realized the good overall prediction performance and the prediction accuracy and correlation respectively reached 1.7073 and 0.9186. SaPt-CNN-LSTM-AR-EA was compared with other five benchmark models so as to verify its effectiveness and stability. SaPt-CNN-LSTM-AR-EA increased the average accuracy by about 30%. The framework proposed in this article is significant in biology, biomedicine, and computer science, and can be widely applied in sequence splicing, computational biology, bioinformation, and other fields.
Collapse
Affiliation(s)
- Wu Yan
- School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, China
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, Jiangxi, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Li Tan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, China
| | - Li Meng-Shan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Wang Jun
- School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Wu Fu-an
- School of Biotechnology, Jiangsu University of Science & Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
10
|
Qian Y, Shang T, Guo F, Wang C, Cui Z, Ding Y, Wu H. Identification of DNA-binding protein based multiple kernel model. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:13149-13170. [PMID: 37501482 DOI: 10.3934/mbe.2023586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
DNA-binding proteins (DBPs) play a critical role in the development of drugs for treating genetic diseases and in DNA biology research. It is essential for predicting DNA-binding proteins more accurately and efficiently. In this paper, a Laplacian Local Kernel Alignment-based Restricted Kernel Machine (LapLKA-RKM) is proposed to predict DBPs. In detail, we first extract features from the protein sequence using six methods. Second, the Radial Basis Function (RBF) kernel function is utilized to construct pre-defined kernel metrics. Then, these metrics are combined linearly by weights calculated by LapLKA. Finally, the fused kernel is input to RKM for training and prediction. Independent tests and leave-one-out cross-validation were used to validate the performance of our method on a small dataset and two large datasets. Importantly, we built an online platform to represent our model, which is now freely accessible via http://8.130.69.121:8082/.
Collapse
Affiliation(s)
- Yuqing Qian
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Tingting Shang
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Chunliang Wang
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Cui
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Hongjie Wu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
11
|
Tellechea-Luzardo J, Stiebritz MT, Carbonell P. Transcription factor-based biosensors for screening and dynamic regulation. Front Bioeng Biotechnol 2023; 11:1118702. [PMID: 36814719 PMCID: PMC9939652 DOI: 10.3389/fbioe.2023.1118702] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Advances in synthetic biology and genetic engineering are bringing into the spotlight a wide range of bio-based applications that demand better sensing and control of biological behaviours. Transcription factor (TF)-based biosensors are promising tools that can be used to detect several types of chemical compounds and elicit a response according to the desired application. However, the wider use of this type of device is still hindered by several challenges, which can be addressed by increasing the current metabolite-activated transcription factor knowledge base, developing better methods to identify new transcription factors, and improving the overall workflow for the design of novel biosensor circuits. These improvements are particularly important in the bioproduction field, where researchers need better biosensor-based approaches for screening production-strains and precise dynamic regulation strategies. In this work, we summarize what is currently known about transcription factor-based biosensors, discuss recent experimental and computational approaches targeted at their modification and improvement, and suggest possible future research directions based on two applications: bioproduction screening and dynamic regulation of genetic circuits.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Martin T. Stiebritz
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
12
|
Pradhan UK, Meher PK, Naha S, Pal S, Gupta A, Parsad R. PlDBPred: a novel computational model for discovery of DNA binding proteins in plants. Brief Bioinform 2023; 24:6840070. [PMID: 36416116 DOI: 10.1093/bib/bbac483] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
DNA-binding proteins (DBPs) play crucial roles in numerous cellular processes including nucleotide recognition, transcriptional control and the regulation of gene expression. Majority of the existing computational techniques for identifying DBPs are mainly applicable to human and mouse datasets. Even though some models have been tested on Arabidopsis, they produce poor accuracy when applied to other plant species. Therefore, it is imperative to develop an effective computational model for predicting plant DBPs. In this study, we developed a comprehensive computational model for plant specific DBPs identification. Five shallow learning and six deep learning models were initially used for prediction, where shallow learning methods outperformed deep learning algorithms. In particular, support vector machine achieved highest repeated 5-fold cross-validation accuracy of 94.0% area under receiver operating characteristic curve (AUC-ROC) and 93.5% area under precision recall curve (AUC-PR). With an independent dataset, the developed approach secured 93.8% AUC-ROC and 94.6% AUC-PR. While compared with the state-of-art existing tools by using an independent dataset, the proposed model achieved much higher accuracy. Overall results suggest that the developed computational model is more efficient and reliable as compared to the existing models for the prediction of DBPs in plants. For the convenience of the majority of experimental scientists, the developed prediction server PlDBPred is publicly accessible at https://iasri-sg.icar.gov.in/pldbpred/.The source code is also provided at https://iasri-sg.icar.gov.in/pldbpred/source_code.php for prediction using a large-size dataset.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi-110012, India
| | - Soumen Pal
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi-110012, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi-110012, India
| |
Collapse
|
13
|
Pandey M, Anoosha P, Yesudhas D, Gromiha MM. Identification of potential driver mutations in glioblastoma using machine learning. Brief Bioinform 2022; 23:6764546. [PMID: 36266243 DOI: 10.1093/bib/bbac451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is a fast and aggressively growing tumor in the brain and spinal cord. Mutation of amino acid residues in targets proteins, which are involved in glioblastoma, alters the structure and function and may lead to disease. In this study, we collected a set of 9386 disease-causing (drivers) mutations based on the recurrence in patient samples and experimentally annotated as pathogenic and 8728 as neutral (passenger) mutations. We observed that Arg is highly preferred at the mutant sites of drivers, whereas Met and Ile showed preferences in passengers. Inspecting neighboring residues at the mutant sites revealed that the motifs YP, CP and GRH, are preferred in drivers, whereas SI, IQ and TVI are dominant in neutral. In addition, we have computed other sequence-based features such as conservation scores, Position Specific Scoring Matrices (PSSM) and physicochemical properties, and developed a machine learning-based method, GBMDriver (GlioBlastoma Multiforme Drivers), for distinguishing between driver and passenger mutations. Our method showed an accuracy and AUC of 73.59% and 0.82, respectively, on 10-fold cross-validation and 81.99% and 0.87 in a blind set of 1809 mutants. The tool is available at https://web.iitm.ac.in/bioinfo2/GBMDriver/index.html. We envisage that the present method is helpful to prioritize driver mutations in glioblastoma and assist in identifying therapeutic targets.
Collapse
Affiliation(s)
- Medha Pandey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - P Anoosha
- Division of Medical Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Dhanusha Yesudhas
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
14
|
Yu S, Peng D, Zhu W, Liao B, Wang P, Yang D, Wu F. Hybrid_DBP: Prediction of DNA-binding proteins using hybrid features and convolutional neural networks. Front Pharmacol 2022; 13:1031759. [PMID: 36299898 PMCID: PMC9589247 DOI: 10.3389/fphar.2022.1031759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
DNA-binding proteins (DBP) play an essential role in the genetics and evolution of organisms. A particular DNA sequence could provide underlying therapeutic benefits for hereditary diseases and cancers. Studying these proteins can timely and effectively understand their mechanistic analysis and play a particular function in disease prevention and treatment. The limitation of identifying DNA-binding protein members from the sequence database is time-consuming, costly, and ineffective. Therefore, efficient methods for improving DBP classification are crucial to disease research. In this paper, we developed a novel predictor Hybrid _DBP, which identified potential DBP by using hybrid features and convolutional neural networks. The method combines two feature selection methods, MonoDiKGap and Kmer, and then used MRMD2.0 to remove redundant features. According to the results, 94% of DBP were correctly recognized, and the accuracy of the independent test set reached 91.2%. This means Hybrid_ DBP can become a useful prediction tool for predicting DBP.
Collapse
Affiliation(s)
- Shaoyou Yu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Dejun Peng
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- *Correspondence: Wen Zhu,
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Peng Wang
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Dongxuan Yang
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Fangxiang Wu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| |
Collapse
|
15
|
DBP-iDWT: Improving DNA-Binding Proteins Prediction Using Multi-Perspective Evolutionary Profile and Discrete Wavelet Transform. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2987407. [PMID: 36211019 PMCID: PMC9534628 DOI: 10.1155/2022/2987407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
DNA-binding proteins (DBPs) have crucial biotic activities including DNA replication, recombination, and transcription. DBPs are highly concerned with chronic diseases and are used in the manufacturing of antibiotics and steroids. A series of predictors were established to identify DBPs. However, researchers are still working to further enhance the identification of DBPs. This research designed a novel predictor to identify DBPs more accurately. The features from the sequences are transformed by F-PSSM (Filtered position-specific scoring matrix), PSSM-DPC (Position specific scoring matrix-dipeptide composition), and R-PSSM (Reduced position-specific scoring matrix). To eliminate the noisy attributes, we extended DWT (discrete wavelet transform) to F-PSSM, PSSM-DPC, and R-PSSM and introduced three novel descriptors, namely, F-PSSM-DWT, PSSM-DPC-DWT, and R-PSSM-DWT. Onward, the training of the four models were performed using LiXGB (Light eXtreme gradient boosting), XGB (eXtreme gradient boosting, ERT (extremely randomized trees), and Adaboost. LiXGB with R-PSSM-DWT has attained 6.55% higher accuracy on training and 5.93% on testing dataset than the best existing predictors. The results reveal the excellent performance of our novel predictor over the past studies. DBP-iDWT would be fruitful for establishing more operative therapeutic strategies for fatal disease treatment.
Collapse
|
16
|
Guo JT, Malik F. Single-Stranded DNA Binding Proteins and Their Identification Using Machine Learning-Based Approaches. Biomolecules 2022; 12:biom12091187. [PMID: 36139026 PMCID: PMC9496475 DOI: 10.3390/biom12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Single-stranded DNA (ssDNA) binding proteins (SSBs) are critical in maintaining genome stability by protecting the transient existence of ssDNA from damage during essential biological processes, such as DNA replication and gene transcription. The single-stranded region of telomeres also requires protection by ssDNA binding proteins from being attacked in case it is wrongly recognized as an anomaly. In addition to their critical roles in genome stability and integrity, it has been demonstrated that ssDNA and SSB-ssDNA interactions play critical roles in transcriptional regulation in all three domains of life and viruses. In this review, we present our current knowledge of the structure and function of SSBs and the structural features for SSB binding specificity. We then discuss the machine learning-based approaches that have been developed for the prediction of SSBs from double-stranded DNA (dsDNA) binding proteins (DSBs).
Collapse
|
17
|
Research on DNA-Binding Protein Identification Method Based on LSTM-CNN Feature Fusion. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9705275. [PMID: 35693256 PMCID: PMC9184165 DOI: 10.1155/2022/9705275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
Protein is closely related to life activities. As a kind of protein, DNA-binding protein plays an irreplaceable role in life activities. Therefore, it is very important to study DNA-binding protein, which is a subject worthy of study. Although traditional biotechnology has high precision, its cost and efficiency are increasingly unable to meet the needs of modern society. Machine learning methods can make up for the deficiencies of biological experimental techniques to a certain extent, but they are not as simple and fast as deep learning for data processing. In this paper, a deep learning framework based on parallel long and short-term memory(LSTM) and convolutional neural networks(CNN) was proposed to identify DNA-binding protein. This model can not only further extract the information and features of protein sequences, but also the features of evolutionary information. Finally, the two features are combined for training and testing. On the PDB2272 dataset, compared with PDBP_Fusion model, Accuracy(ACC) and Matthew's Correlation Coefficient (MCC) increased by 3.82% and 7.98% respectively. The experimental results of this model have certain advantages.
Collapse
|
18
|
Yan J, Jiang T, Liu J, Lu Y, Guan S, Li H, Wu H, Ding Y. DNA-binding protein prediction based on deep transfer learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:7719-7736. [PMID: 35801442 DOI: 10.3934/mbe.2022362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of DNA binding proteins (DBPs) is of great importance in the biomedical field and plays a key role in this field. At present, many researchers are working on the prediction and detection of DBPs. Traditional DBP prediction mainly uses machine learning methods. Although these methods can obtain relatively high pre-diction accuracy, they consume large quantities of human effort and material resources. Transfer learning has certain advantages in dealing with such prediction problems. Therefore, in the present study, two features were extracted from a protein sequence, a transfer learning method was used, and two classical transfer learning algorithms were compared to transfer samples and construct data sets. In the final step, DBPs are detected by building a deep learning neural network model in a way that uses attention mechanisms.
Collapse
Affiliation(s)
- Jun Yan
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Tengsheng Jiang
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Junkai Liu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yaoyao Lu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Shixuan Guan
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haiou Li
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hongjie Wu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Smart City Research Institute, Suzhou University of Science and Technology, Suzhou, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
19
|
Tng SS, Le NQK, Yeh HY, Chua MCH. Improved Prediction Model of Protein Lysine Crotonylation Sites Using Bidirectional Recurrent Neural Networks. J Proteome Res 2021; 21:265-273. [PMID: 34812044 DOI: 10.1021/acs.jproteome.1c00848] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Histone lysine crotonylation (Kcr) is a post-translational modification of histone proteins that is involved in the regulation of gene transcription, acute and chronic kidney injury, spermatogenesis, depression, cancer, and so forth. The identification of Kcr sites in proteins is important for characterizing and regulating primary biological mechanisms. The use of computational approaches such as machine learning and deep learning algorithms have emerged in recent years as the traditional wet-lab experiments are time-consuming and costly. We propose as part of this study a deep learning model based on a recurrent neural network (RNN) termed as Sohoko-Kcr for the prediction of Kcr sites. Through the embedded encoding of the peptide sequences, we investigate the efficiency of RNN-based models such as long short-term memory (LSTM), bidirectional LSTM (BiLSTM), and bidirectional gated recurrent unit (BiGRU) networks using cross-validation and independent tests. We also established the comparison between Sohoko-Kcr and other published tools to verify the efficiency of our model based on 3-fold, 5-fold, and 10-fold cross-validations using independent set tests. The results then show that the BiGRU model has consistently displayed outstanding performance and computational efficiency. Based on the proposed model, a webserver called Sohoko-Kcr was deployed for free use and is accessible at https://sohoko-research-9uu23.ondigitalocean.app.
Collapse
Affiliation(s)
- Sian Soo Tng
- Institute of Systems Science, National University of Singapore, 29 Heng Mui Keng Terrace, Singapore 119620, Singapore
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan.,Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan.,Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Hui-Yuan Yeh
- Medical Humanities Research Cluster, School of Humanities, Nanyang Technological University, 48 Nanyang Avenue, Singapore 639818, Singapore
| | - Matthew Chin Heng Chua
- Institute of Systems Science, National University of Singapore, 29 Heng Mui Keng Terrace, Singapore 119620, Singapore
| |
Collapse
|