1
|
Feng W, He Q, Li J, Zhou J, Hua G, Xu Y, Jiang G, Tang Y. Variability in Morphological Traits and Nutritional Profiles of Adult Eriocheir sinensis in Different Aquacultural Regions. Animals (Basel) 2025; 15:243. [PMID: 39858243 PMCID: PMC11759138 DOI: 10.3390/ani15020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Eriocheir sinensis is a species of significant economic importance in China's aquaculture industry. In order to investigate the variations in morphologic and nutritional profiles of farmed crabs across diverse farming regions, E. sinensis were collected from six aquafarms located in the primary cultivation areas in China. The findings revealed significant variations in specific morphological indices, but these are insufficient for clear regional distinction using PCA. Essential amino acid (EAA) levels varied by tissue and gender, with ovaries from the YY (Yongyan in Anhui province) group showing the highest levels, while the hepatopancreas in females from the JX (Jianxian in Jiangxi province) group had the lowest. The analysis of fatty acid contents revealed that muscles were rich in PUFAs, whereas MUFAs were dominant in the hepatopancreas and gonads. The fatty acid levels were significantly higher in ovaries than in testes, notably in the HZ (Huzhou in Zhejiang province), EZ (Ezhou in Hubei province), YY, and JX groups. Furthermore, the PCA based on proximate composition, amino acids, and fatty acids revealed distinct categorizations of E. sinensis from various regions. In conclusion, these findings highlight significant regional variations in the morphology and nutritional composition of farmed E. sinensis, suggesting the need for tailored aquaculture practices to optimize quality and output.
Collapse
Affiliation(s)
- Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (Q.H.); (J.L.); (Y.X.); (G.J.)
| | - Qinghong He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (Q.H.); (J.L.); (Y.X.); (G.J.)
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (Q.H.); (J.L.); (Y.X.); (G.J.)
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China;
| | - Guoan Hua
- China Jiangsu Haorun Biological Industry Group Co., Ltd., Taizhou 225311, China;
| | - Yuanfeng Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (Q.H.); (J.L.); (Y.X.); (G.J.)
| | - Gang Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (Q.H.); (J.L.); (Y.X.); (G.J.)
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.F.); (Q.H.); (J.L.); (Y.X.); (G.J.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
2
|
Wang J, Zhang Y, Lv H, Shen W, Fang W, Zhang R, Zhao H, Sheng Q. Effectiveness of Juvenile Eriocheir sinensis in Controlling Pomacea canaliculata and Their Growth and Nutritional Response to Feeding on the Snail. Animals (Basel) 2025; 15:85. [PMID: 39795028 PMCID: PMC11718907 DOI: 10.3390/ani15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, Pomacea canaliculata has aggressively invaded rice fields in Asia, resulting in significant agricultural losses. Biological control can effectively reduce the damage caused by P. canaliculata. This research evaluates E. sinensis as a biocontrol for P. canaliculata, focusing on its feeding preferences and optimal control density on snails of three sizes, as well as the effects on the nutritional quality of juvenile crabs post consumption. Our findings reveal that juvenile E. sinensis exhibit a strong preference for feeding on small snails, effectively managing populations at densities of 600 snails per tank. Crab feeding significantly reduces the survival and activity of snails. Furthermore, consumption of P. canaliculata meat alters the crabs' physiology. Female crabs show elevated levels of molting hormones, total energy yield (TEY), and condition factor (CF), while males demonstrate increased lipid, moisture, and TEY levels. The amino acid profiles shift, with higher isoleucine and leucine levels in female hepatopancreas and reduced histidine in the muscles. Notably, the total Σn-3 PUFA content in female muscles fed on snail meat exceeds that of those given commodity grain. This study underscores the dual benefits of employing juvenile E. sinensis for managing P. canaliculata while enhancing crab farming practices.
Collapse
Affiliation(s)
- Jie Wang
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| | - Yixiang Zhang
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| | - He Lv
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| | - Weiqi Shen
- Changxing County Aquatic and Agricultural Machinery Center, Huzhou 313100, China; (W.S.); (W.F.)
| | - Weiping Fang
- Changxing County Aquatic and Agricultural Machinery Center, Huzhou 313100, China; (W.S.); (W.F.)
| | - Rongfei Zhang
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| | - Hanqu Zhao
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| | - Qiang Sheng
- Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; (J.W.); (Y.Z.); (H.L.); (R.Z.); (H.Z.)
| |
Collapse
|
3
|
Zi X, Li Y, Li G, Jia B, Jeppesen E, Zeng Q, Gu X. A molting chemical cue (N-acetylglucosamine-6-phosphate) contributes to cannibalism of Chinese mitten crab Eriocheir sinensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106666. [PMID: 37660581 DOI: 10.1016/j.aquatox.2023.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Under high-density culture, cannibalism occurs frequently during the molting of the Chinese mitten crabs Eriocheir sinensis, resulting in a large reduction in production. We found that the leakage of molting fluid from sexually immature crabs informs conspecifics that they are in a molting process. This hypothesis was verified through metabolomics analyses combined with behavioral experiments. The GlcNAc-6-P was identified as a molting biomarker from the differential metabolites by non-targeted metabolomics. In addition, we found that the concentration of GlcNAc-6-P in the molting fluid was significantly higher than other molting metabolites at different molting stages, reaching 5.84 μmol L-1, indicating that the molting fluid was the source of GlcNAc-6-P. Moreover, the behavioral experiments showed that crabs were actively approached to high concentrations of GlcNAc-6-P (1 μmol L-1), but had no obvious choice tendency at different concentrations of UTP, 20-HE and low concentrations of GlcNAc-6-P (0.1 μmol L-1, 0.01 μmol L-1) compared with the control groups. In conclusion, that E. sinensis by sensing the concentration change of GlcNAc-6-P can locate the source of GlcNAc-6-P release and actively approach the high concentration GlcNAc-6-P area and attack the molting crab, causing cannibalism. Blocking the reception pathway of molting chemical cues in E. sinensis, thereby preventing the perception of signals originating from conspecifics' molting in the vicinity, could lead to a reduction in cannibalistic behavior and an increase in overall production. Additionally, this method presents a prospective solution for addressing cannibalism in other crustacean species where such behavior is prevalent.
Collapse
Affiliation(s)
- Xinyuan Zi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifan Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gang Li
- Nanjing Zechun Water Engineering Co., Ltd, 211300, China
| | - Bingchan Jia
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Århus, Denmark; Sino-Danish Centre for Education and Research, Beijing, China; Limnology Laboratory, Department of Biological Sciences, and Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
4
|
Zhao M, Lin Z, Zheng Z, Yao D, Yang S, Zhao Y, Chen X, Aweya JJ, Zhang Y. The mechanisms and factors that induce trained immunity in arthropods and mollusks. Front Immunol 2023; 14:1241934. [PMID: 37744346 PMCID: PMC10513178 DOI: 10.3389/fimmu.2023.1241934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Besides dividing the organism's immune system into adaptive and innate immunity, it has long been thought that only adaptive immunity can establish immune memory. However, many studies have shown that innate immunity can also build immunological memory through epigenetic reprogramming and modifications to resist pathogens' reinfection, known as trained immunity. This paper reviews the role of mitochondrial metabolism and epigenetic modifications and describes the molecular foundation in the trained immunity of arthropods and mollusks. Mitochondrial metabolism and epigenetic modifications complement each other and play a key role in trained immunity.
Collapse
Affiliation(s)
- Mingming Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhongyang Lin
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| |
Collapse
|
5
|
Zhao N, Yuan R, Usman B, Qin J, Yang J, Peng L, Mackon E, Liu F, Qin B, Li R. Detection of QTLs Regulating Six Agronomic Traits of Rice Based on Chromosome Segment Substitution Lines of Common Wild Rice ( Oryza rufipogon Griff.) and Mapping of qPH1.1 and qLMC6.1. Biomolecules 2022; 12:biom12121850. [PMID: 36551278 PMCID: PMC9775987 DOI: 10.3390/biom12121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Wild rice is a primary source of genes that can be utilized to generate rice cultivars with advantageous traits. Chromosome segment substitution lines (CSSLs) are consisting of a set of consecutive and overlapping donor chromosome segments in a recipient's genetic background. CSSLs are an ideal genetic population for mapping quantitative traits loci (QTLs). In this study, 59 CSSLs from the common wild rice (Oryza rufipogon Griff.) accession DP15 under the indica rice cultivar (O. sativa L. ssp. indica) variety 93-11 background were constructed through multiple backcrosses and marker-assisted selection (MAS). Through high-throughput whole genome re-sequencing (WGRS) of parental lines, 12,565 mapped InDels were identified and designed for polymorphic molecular markers. The 59 CSSLs library covered 91.72% of the genome of common wild rice accession DP15. The DP15-CSSLs displayed variation in six economic traits including grain length (GL), grain width (GW), thousand-grain weight (TGW), grain length-width ratio (GLWR), plant height (PH), and leaf margin color (LMC), which were finally attributed to 22 QTLs. A homozygous CSSL line and a purple leave margin CSSL line were selected to construct two secondary genetic populations for the QTLs mapping. Thus, the PH-controlling QTL qPH1.1 was mapped to a region of 4.31-Mb on chromosome 1, and the LMC-controlling QTL qLMC6.1 was mapped to a region of 370-kb on chromosome 6. Taken together, these identified novel QTLs/genes from common wild rice can potentially promote theoretical knowledge and genetic applications to rice breeders worldwide.
Collapse
Affiliation(s)
- Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ruizhi Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Babar Usman
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jiaming Qin
- Maize Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China
| | - Jinlian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Liyun Peng
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Enerand Mackon
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
6
|
Zakaria KA, Yatim NI, Ali N, Rastegari H. Recycling phosphorus and calcium from aquaculture waste as a precursor for hydroxyapatite (HAp) production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46471-46486. [PMID: 35508846 DOI: 10.1007/s11356-022-20521-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Water contaminated with phosphorus needs to be managed efficiently to ensure that clean water sources will be preserved. Aquaculture plays an essential role in supplying food and generating high revenue. However, the quantity of phosphorus released from aquaculture effluents is among the major concerns for the environment. Phosphorus is a non-renewable, spatially concentrated material essential for global food production. Phosphorus is also known as a primary source of eutrophication. Hence, phosphorus recovery and separation from different wastewater streams are mandatory. This paper reviews the source of phosphorus in the environment, focusing on aquaculture wastewater as a precursor for hydroxyapatite formation evaluates the research progress on maximizing phosphorus removal from aquaculture wastewater effluents and converting it into a conversion. Shrimp shell waste appears to be an essential resource for manufacturing high-value chemicals, given current trends in wealth creation from waste. Shrimp shell waste is the richest source of calcium carbonate and has been used to produce hydroxyapatite after proper treatment is reviewed. There have been significant attempts to create safe and long-term solutions for the disposal of shrimp shell debris. Through the discussion, the optimum condition of the method, the source of phosphorus, and the calcium are the factors that influence the formation of hydroxyapatite as a pioneer in zero-waste management for sustainability and profitable approach. This review will provide comprehensive documentation on resource utilization and product development from aquaculture wastewater and waste to achieve a zero-waste approach.
Collapse
Affiliation(s)
- Kamalia A Zakaria
- Faculty of Ocean Engineering Technology & Informatics, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Norhafiza I Yatim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nora'aini Ali
- Faculty of Ocean Engineering Technology & Informatics, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|