1
|
Zhao S, Chen F, Hu L, Li X, Gao Z, Chen M, Wang X, Song Z. Long non-coding rnas as key modulators of the immune microenvironment in hepatocellular carcinoma: implications for Immunotherapy. Front Immunol 2025; 16:1523190. [PMID: 40352941 PMCID: PMC12061944 DOI: 10.3389/fimmu.2025.1523190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major global health challenge, characterized by its complex immune microenvironment that plays a pivotal role in tumor progression and therapeutic response. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of various biological processes, including gene expression and immune cell function. This review explores the multifaceted roles of lncRNAs in modulating the immune microenvironment of HCC. We discuss how lncRNAs influence the infiltration and activation of immune cells, shape cytokine profiles, and regulate immune checkpoint molecules, thereby affecting the tumor's immunogenicity and response to immunotherapy. Furthermore, we highlight specific lncRNAs implicated in immune evasion mechanisms and their potential as biomarkers and therapeutic targets. By elucidating the intricate interplay between lncRNAs and the immune landscape in HCC, this review aims to provide insights into novel strategies for enhancing immunotherapeutic efficacy and improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoguang Wang
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
2
|
Su C, Xue Y, Fan S, Sun X, Si Q, Gu Z, Wang J, Deng R. Ferroptosis and its relationship with cancer. Front Cell Dev Biol 2025; 12:1423869. [PMID: 39877159 PMCID: PMC11772186 DOI: 10.3389/fcell.2024.1423869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Marked by iron buildup and lipid peroxidation, ferroptosis is a relatively new regulatory cell death (RCD) pathway. Many diseases like cancer, myocardial ischemia-reperfusion injury (MIRI), neurological disorders and acute renal failure (AKI) are corelated with ferroptosis. The main molecular processes of ferroptosis discovered yet will be presented here, along with the approaches in which it interacts with tumour-associated signaling pathways and its uses in systemic therapy, radiation therapy, and immunotherapy managing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Runzhi Deng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Sui Y, Geng X, Wang Z, Zhang J, Yang Y, Meng Z. Targeting the regulation of iron homeostasis as a potential therapeutic strategy for nonalcoholic fatty liver disease. Metabolism 2024; 157:155953. [PMID: 38885833 DOI: 10.1016/j.metabol.2024.155953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
With aging and the increasing incidence of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. NAFLD mainly includes simple hepatic steatosis, nonalcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma (HCC). An imbalance in hepatic iron homeostasis is usually associated with the progression of NAFLD and induces iron overload, reactive oxygen species (ROS) production, and lipid peroxide accumulation, which leads to ferroptosis. Ferroptosis is a unique type of programmed cell death (PCD) that is characterized by iron dependence, ROS production and lipid peroxidation. The ferroptosis inhibition systems involved in NAFLD include the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10)/nicotinamide adenine dinucleotide phosphate (NADPH) regulatory axes. The main promotion system involved is the acyl-CoA synthetase long-chain family (ACSL4)/arachidonic lipoxygenase 15 (ALOX15) axis. In recent years, an increasing number of studies have focused on the multiple roles of iron homeostasis imbalance and ferroptosis in the progression of NAFLD. This review highlights the latest studies about iron homeostasis imbalance- and ferroptosis-associated NAFLD, mainly including the physiology and pathophysiology of hepatic iron metabolism, hepatic iron homeostasis imbalance during the development of NAFLD, and key regulatory molecules and roles of hepatic ferroptosis in NAFLD. This review aims to provide innovative therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Jing Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Yanqun Yang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China.
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
4
|
Deng W, Yan Y, Shi C, Sui D. Single-cell and bulk RNAseq unveils the immune infiltration landscape and targeted therapeutic biomarkers of psoriasis. Front Genet 2024; 15:1365273. [PMID: 38699235 PMCID: PMC11063342 DOI: 10.3389/fgene.2024.1365273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Background Psoriasis represents a multifaceted and debilitating immune-mediated systemic ailment afflicting millions globally. Despite the continuous discovery of biomarkers associated with psoriasis, identifying lysosomal biomarkers, pivotal as cellular metabolic hubs, remains elusive. Methods We employed a combination of differential expression analysis and weighted gene co-expression network analysis (WGCNA) to initially identify lysosomal genes. Subsequently, to mitigate overfitting and eliminate collinear genes, we applied 12 machine learning algorithms to screen robust lysosomal genes. These genes underwent further refinement through random forest (RF) and Lasso algorithms to ascertain the final hub lysosomal genes. To assess their predictive efficacy, we conducted receiver operating characteristic (ROC) analysis and verified the expression of diagnostic biomarkers at both bulk and single-cell levels. Furthermore, we utilized single-sample gene set enrichment analysis (ssGSEA), CIBERSORT, and Pearson's correlation analysis to elucidate the association between immune phenotypes and hub lysosomal genes in psoriatic samples. Finally, employing the Cellchat algorithm, we explored potential mechanisms underlying the participation of these hub lysosomal genes in cell-cell communication. Results Functional enrichment analyses revealed a close association between psoriasis and lysosomal functions. Subsequent intersection analysis identified 19 key lysosomal genes, derived from DEGs, phenotypic genes of WGCNA, and lysosomal gene sets. Following the exclusion of collinear genes, we identified 11 robust genes, further refined through RF and Lasso, yielding 3 hub lysosomal genes (S100A7, SERPINB13, and PLBD1) closely linked to disease occurrence, with high predictive capability for disease diagnosis. Concurrently, we validated their relative expression in separate bulk datasets and single-cell datasets. A nomogram based on these hub genes may offer clinical advantages for patients. Notably, these three hub genes facilitated patient classification into two subtypes, namely metabolic-immune subtype 1 and signaling subtype 2. CMap analysis suggested butein and arachidonic fasudil as preferred treatment agents for subtype 1 and subtype 2, respectively. Finally, through Cellchat and correlation analysis, we identified PRSS3-F2R as potentially promoting the expression of hub genes in the psoriasis group, thereby enhancing keratinocyte-fibroblast interaction, ultimately driving psoriasis occurrence and progression. Conclusion Our study identifies S100A7, SERPINB13, and PLBD1 as potential diagnostic biomarkers, offering promising prospects for more precisely tailored psoriatic immunotherapy designs.
Collapse
Affiliation(s)
- Wenhui Deng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yijiao Yan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chengzhi Shi
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Daoshun Sui
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Pu L, Sun Y, Pu C, Zhang X, Wang D, Liu X, Guo P, Wang B, Xue L, Sun P. Machine learning-based disulfidptosis-related lncRNA signature predicts prognosis, immune infiltration and drug sensitivity in hepatocellular carcinoma. Sci Rep 2024; 14:4354. [PMID: 38388539 PMCID: PMC10883983 DOI: 10.1038/s41598-024-54115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Disulfidptosis a new cell death mode, which can cause the death of Hepatocellular Carcinoma (HCC) cells. However, the significance of disulfidptosis-related Long non-coding RNAs (DRLs) in the prognosis and immunotherapy of HCC remains unclear. Based on The Cancer Genome Atlas (TCGA) database, we used Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression model to construct DRL Prognostic Signature (DRLPS)-based risk scores and performed Gene Expression Omnibus outside validation. Survival analysis was performed and a nomogram was constructed. Moreover, we performed functional enrichment annotation, immune infiltration and drug sensitivity analyses. Five DRLs (AL590705.3, AC072054.1, AC069307.1, AC107959.3 and ZNF232-AS1) were identified to construct prognostic signature. DRLPS-based risk scores exhibited better predictive efficacy of survival than conventional clinical features. The nomogram showed high congruence between the predicted survival and observed survival. Gene set were mainly enriched in cell proliferation, differentiation and growth function related pathways. Immune cell infiltration in the low-risk group was significantly higher than that in the high-risk group. Additionally, the high-risk group exhibited higher sensitivity to Afatinib, Fulvestrant, Gefitinib, Osimertinib, Sapitinib, and Taselisib. In conclusion, our study highlighted the potential utility of the constructed DRLPS in the prognosis prediction of HCC patients, which demonstrated promising clinical application value.
Collapse
Affiliation(s)
- Lei Pu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Yan Sun
- Department of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, 261071, Shandong, People's Republic of China
| | - Cheng Pu
- School of Martial Arts, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiaoyan Zhang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Dong Wang
- Jiangsu Vocational Institute of Architectural Technology, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Xingning Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Pin Guo
- Department of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, 261071, Shandong, People's Republic of China
| | - Bing Wang
- Department of Oncological Surgery, Minhang Branch of Shanghai Cancer Center, Fudan University, Shanghai, 200240, People's Republic of China.
| | - Liang Xue
- Zhejiang Institute of Sports Science, Hangzhou, 310004, Zhejiang, People's Republic of China.
| | - Peng Sun
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
6
|
Wang D, Ding D, Ying J, Qin Y. Bioinformatics identification of a T-cell-related signature for predicting prognosis and drug sensitivity in hepatocellular carcinoma. IET Syst Biol 2023; 17:366-377. [PMID: 37935646 PMCID: PMC10725711 DOI: 10.1049/syb2.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease with poor clinical outcomes. T cells play a vital role in the crosstalk between the tumour microenvironment and HCC. Single-cell RNA sequencing data were downloaded from the GSE149614 dataset. The T-cell-related prognostic signature (TRPS) was developed with the integrative procedure including 10 machine learning algorithms. The TRPS was established using 7 T-cell-related markers in the Cancer Genome Atlas cohort with 1-, 2- and 3-year area under curve values of 0.820, 0.725 and 0.678, respectively. TRPS acted as an independent risk factor for HCC patients. HCC patients with a high TRPS-based risk score had a higher Tumour Immune Dysfunction and Exclusion score, lower PD1 and CTLA4 immunophenoscore and lower level of immunoactivated cells, including CD8+ T cells and NK cells. The response rate was significantly higher in patients with low-risk scores in immunotherapy cohorts, including IMigor210 and GSE91061. The TRPS-based nomogram had a relatively good predictive value in evaluating the mortality risk at 1, 3 and 5 years in HCC. Overall, this study develops a TRPS by integrated bioinformatics analysis. This TRPS acted as an independent risk factor for the OS rate of HCC patients. It can screen for HCC patients who might benefit from immunotherapy, chemotherapy and targeted therapy.
Collapse
Affiliation(s)
- Dianqian Wang
- Health Science CenterNingbo UniversityNingboZhejiangChina
| | - Dongxiao Ding
- Department of Thoracic SurgeryThe People's Hospital of Beilun DistrictNingboZhejiangChina
| | - Junjie Ying
- Department of Thoracic SurgeryThe People's Hospital of Beilun DistrictNingboZhejiangChina
| | - Yunsheng Qin
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Department of Hepatobiliary SurgeryThe People's Hospital of Beilun DistrictNingboZhejiangChina
| |
Collapse
|
7
|
Meng ZY, Fan YC, Zhang CS, Zhang LL, Wu T, Nong MY, Wang T, Chen C, Jiang LH. EXOSC10 is a novel hepatocellular carcinoma prognostic biomarker: a comprehensive bioinformatics analysis and experiment verification. PeerJ 2023; 11:e15860. [PMID: 37701829 PMCID: PMC10494838 DOI: 10.7717/peerj.15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor. There are few studies on EXOSC10 (exosome component 10) in HCC; however, the importance of EXOSC10 for HCC remains unclear. Methods In the study, the prognosis value of EXOSC10 and the immune correlation were explored by bioinformatics. The expression of EXOSC10 was verified by tissue samples from clinical patients and in vitro experiment (liver cancer cell lines HepG2, MHCC97H and Huh-7; normal human liver cell line LO2). Immunohistochemistry (IHC) was used to detect EXOSC10 protein expression in clinical tissue from HCC. Huh-7 cells with siEXOSC10 were constructed using lipofectamine 3000. Cell counting kit 8 (CCK-8) and colony formation were used to test cell proliferation. The wound healing and transwell were used to analyze the cell migration capacity. Mitochondrial membrane potential, Hoechst 33342 dye, and flow cytometer were used to detect the change in cell apoptosis, respectively. Differential expression genes (DEGs) analysis and gene set enrichment analysis (GSEA) were used to investigate the potential mechanism of EXOSC10 and were verified by western blotting. Results EXOSC10 was highly expressed in tissues from patients with HCC and was an independent prognostic factor for overall survival (OS) in HCC. Increased expression of EXOSC10 was significantly related to histological grade, T stage, and pathological stage. Multivariate analysis indicated that the high expression level of EXOSC10 was correlated with poor overall survival (OS) in HCC. GO and GSEA analysis showed enrichment of the cell cycle and p53-related signaling pathway. Immune analysis showed that EXOSC10 expression was a significant positive correlation with immune infiltration in HCC. In vitro experiments, cell proliferation and migration were inhibited by the elimination of EXOSC10. Furthermore, the elimination of EXOSC10 induced cell apoptosis, suppressed PARP, N-cadherin and Bcl-2 protein expression levels, while increasing Bax, p21, p53, p-p53, and E-cadherin protein expression levels. Conclusions EXOSC10 had a predictive value for the prognosis of HCC and may regulate the progression of HCC through the p53-related signaling pathway.
Collapse
Affiliation(s)
- Zhi-Yong Meng
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
- First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Yu-Chun Fan
- Medical College, Guangxi University, Nanning, China
| | - Chao-Sheng Zhang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
| | - Lin-Li Zhang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
| | - Tong Wu
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
| | - Min-Yu Nong
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
| | - Tian Wang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
| | - Chuang Chen
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Li-He Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Nanning, China
- Medical College, Guangxi University, Nanning, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province,Taizhou, Zhejiang, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province (Zunyi Medical University), Guizhou, China
| |
Collapse
|
8
|
Liangyu Z, Bochao Z, Guoquan Y, Yuan Z, Heng L, Hanyu Z. Bioinformatics prediction and experimental verification identify cuproptosis-related lncRNA as prognosis biomarkers of hepatocellular carcinoma. Biochem Biophys Rep 2023; 35:101502. [PMID: 37426702 PMCID: PMC10322676 DOI: 10.1016/j.bbrep.2023.101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/29/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Cuproptosis is a form of cell death caused by intracellular copper excess, which plays an important regulatory role in the development and progression of cancers, including hepatocellular carcinoma (HCC), a prevalent malignancy with high morbidity and mortality. This study aimed to create a cuproptosis associated long non-coding RNAs (CAlncRNAs)signature to predict HCC patient survival and immunotherapy response. Firstly, we identified 509 CAlncRNAs using Pearson correlation analysis in The Cancer Genome Atlas (TCGA) datasets, before the three CAlncRNAs (MKLN1-AS, FOXD2-AS1, LINC02870) with the most prognostic value were further screened. Then, we constructed a prognostic risk model for HCCwas using univariate and LASSO Cox regression analyses. Multivariate Cox regression analyses illustrated that this model was an independent prognostic factor for overall survival (OS) prediction, outperforming traditional clinicopathological factors. And the risk score not only could be prognostic factors independent of other factors but also suited for patients with diverse ages, stages, and grades. The 1-, 3-, and 5- years areas under the curves (AUC) values of the model were 0.759, 0.668 and 0.674 respectively. Pathway analyses showed that the high-risk groupenriched in immune-related pathways. Importantly, patients with higher risk scores exhibited higher mutation frequency, higher TMB scores, and lower TIDE scores. Besides, we screened for two chemical drugs (A-443654 and Pyrimethamine) with the greatest value for high-risk HCC patients. Finally, the abnormal high expression of the three CAlncRNAs were confirmed in HCC tissues and cells by Real Time Quantitative PCR (RT-qPCR). And proliferative, migratory and invasion abilities of HCC cell were restrained via silencing CAlncRNAs expression in vitro. In summary, we built a CAlncRNAs-based risk score model, which can be a candidate for HCC patients prognostic prediction and offer some useful information for immunotherapies.
Collapse
Affiliation(s)
- Zhu Liangyu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zhang Bochao
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yin Guoquan
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zhang Yuan
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Li Heng
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhou Hanyu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
9
|
Feng Q, Huang Z, Song L, Wang L, Lu H, Wu L. Combining bulk and single-cell RNA-sequencing data to develop an NK cell-related prognostic signature for hepatocellular carcinoma based on an integrated machine learning framework. Eur J Med Res 2023; 28:306. [PMID: 37649103 PMCID: PMC10466881 DOI: 10.1186/s40001-023-01300-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The application of molecular targeting therapy and immunotherapy has notably prolonged the survival of patients with hepatocellular carcinoma (HCC). However, multidrug resistance and high molecular heterogeneity of HCC still prevent the further improvement of clinical benefits. Dysfunction of tumor-infiltrating natural killer (NK) cells was strongly related to HCC progression and survival benefits of HCC patients. Hence, an NK cell-related prognostic signature was built up to predict HCC patients' prognosis and immunotherapeutic response. METHODS NK cell markers were selected from scRNA-Seq data obtained from GSE162616 data set. A consensus machine learning framework including a total of 77 algorithms was developed to establish the gene signature in TCGA-LIHC data set, GSE14520 data set, GSE76427 data set and ICGC-LIRI-JP data set. Moreover, the predictive efficacy on ICI response was externally validated by GSE91061 data set and PRJEB23709 data set. RESULTS With the highest C-index among 77 algorithms, a 11-gene signature was established by the combination of LASSO and CoxBoost algorithm, which classified patients into high- and low-risk group. The prognostic signature displayed a good predictive performance for overall survival rate, moderate to high predictive accuracy and was an independent risk factor for HCC patients' prognosis in TCGA, GEO and ICGC cohorts. Compared with high-risk group, low-risk patients showed higher IPS-PD1 blocker, IPS-CTLA4 blocker, common immune checkpoints expression but lower TIDE score, which indicated low-risk patients might be prone to benefiting from ICI treatment. Moreover, a real-world cohort, PRJEB23709, also revealed better immunotherapeutic response in low-risk group. CONCLUSIONS Overall, the present study developed a gene signature based on NK cell-related genes, which offered a novel platform for prognosis and immunotherapeutic response evaluation of HCC patients.
Collapse
Affiliation(s)
- Qian Feng
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhihao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China
| | - Lei Song
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Le Wang
- Department of Blood Transfusion, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China.
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China.
| |
Collapse
|
10
|
Chen X, Peng C, Chen Y, Ding B, Liu S, Song Y, Li Y, Sun B, Yang R. A T-cell-related signature for prognostic stratification and immunotherapy response in hepatocellular carcinoma based on transcriptomics and single-cell sequencing. BMC Bioinformatics 2023; 24:216. [PMID: 37231356 DOI: 10.1186/s12859-023-05344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the fifth most frequently diagnosed malignancy and the third leading cause of cancer death globally. T cells are significantly correlated with the progression, therapy and prognosis of cancer. Limited systematic studies regarding the role of T-cell-related markers in HCC have been performed. METHODS T-cell markers were identified with single-cell RNA sequencing (scRNA-seq) data from the GEO database. A prognostic signature was developed with the LASSO algorithm in the TCGA cohort and verified in the GSE14520 cohort. Another three eligible immunotherapy datasets, GSE91061, PRJEB25780 and IMigor210, were used to verify the role of the risk score in the immunotherapy response. RESULTS With 181 T-cell markers identified by scRNA-seq analysis, a 13 T-cell-related gene-based prognostic signature (TRPS) was developed for prognostic prediction, which divided HCC patients into high-risk and low-risk groups according to overall survival, with AUCs of 1 year, 3 years, and 5 years of 0.807, 0.752, and 0.708, respectively. TRPS had the highest C-index compared with the other 10 established prognostic signatures, suggesting a better performance of TRPS in predicting the prognosis of HCC. More importantly, the TRPS risk score was closely correlated with the TIDE score and immunophenoscore. The high-risk score patients had a higher percentage of SD/PD, and CR/PR occurred more frequently in patients with low TRPS-related risk scores in the IMigor210, PRJEB25780 and GSE91061 cohorts. We also constructed a nomogram based on the TRPS, which had high potential for clinical application. CONCLUSION Our study proposed a novel TRPS for HCC patients, and the TRPS could effectively indicate the prognosis of HCC. It also served as a predictor for immunotherapy.
Collapse
Affiliation(s)
- Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Yu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Bai Ding
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Yinghui Song
- Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Yuhang Li
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Bo Sun
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China.
| | - Ranzhiqiang Yang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China.
| |
Collapse
|
11
|
Li W, Wang Q, Lu J, Zhao B, Geng Y, Wu X, Chen X. Machine learning-based prognostic modeling of lysosome-related genes for predicting prognosis and immune status of patients with hepatocellular carcinoma. Front Immunol 2023; 14:1169256. [PMID: 37275878 PMCID: PMC10237352 DOI: 10.3389/fimmu.2023.1169256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. Lysosomes are organelles that play an important role in cancer progression by breaking down biomolecules. However, the molecular mechanisms of lysosome-related genes in HCC are not fully understood. Methods We downloaded HCC datasets from TCGA and GEO as well as lysosome-related gene sets from AIMGO. After univariate Cox screening of the set of lysosome-associated genes differentially expressed in HCC and normal tissues, risk models were built by machine learning. Model effects were assessed using the concordance index (C-index), Kaplan-Meier (K-M) and receiver operating characteristic curves (ROC). Additionally, we explored the biological function and immune microenvironment between the high- and low-risk groups, and analyzed the response of the high- and low-risk groups to immunotherapy responsiveness and chemotherapeutic agents. Finally, we explored the function of a key gene (RAMP3) at the cellular level. Results Univariate Cox yielded 46 differentially and prognostically significant lysosome-related genes, and risk models were constructed using eight genes (RAMP3, GPLD1, FABP5, CD68, CSPG4, SORT1, CSPG5, CSF3R) derived from machine learning. The risk model was a better predictor of clinical outcomes, with the higher risk group having worse clinical outcomes. There were significant differences in biological function, immune microenvironment, and responsiveness to immunotherapy and drug sensitivity between the high and low-risk groups. Finally, we found that RAMP3 inhibited the proliferation, migration, and invasion of HCC cells and correlated with the sensitivity of HCC cells to Idarubicin. Conclusion Lysosome-associated gene risk models built by machine learning can effectively predict patient prognosis and offer new prospects for chemotherapy and immunotherapy in HCC. In addition, cellular-level experiments suggest that RAMP3 may be a new target for the treatment of HCC.
Collapse
Affiliation(s)
- Wenhua Li
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Qianwen Wang
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Junxia Lu
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Bin Zhao
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Yuqing Geng
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Xiangwei Wu
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
- The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Xueling Chen
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
12
|
Huang Z, Xia H, Cui Y, Yam JWP, Xu Y. Ferroptosis: From Basic Research to Clinical Therapeutics in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:207-218. [PMID: 36406319 PMCID: PMC9647096 DOI: 10.14218/jcth.2022.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and highly heterogeneous malignancies worldwide. Despite the rapid development of multidisciplinary treatment and personalized precision medicine strategies, the overall survival of HCC patients remains poor. The limited survival benefit may be attributed to difficulty in early diagnosis, the high recurrence rate and high tumor heterogeneity. Ferroptosis, a novel mode of cell death driven by iron-dependent lipid peroxidation, has been implicated in the development and therapeutic response of various tumors, including HCC. In this review, we discuss the regulatory network of ferroptosis, describe the crosstalk between ferroptosis and HCC-related signaling pathways, and elucidate the potential role of ferroptosis in various treatment modalities for HCC, such as systemic therapy, radiotherapy, immunotherapy, interventional therapy and nanotherapy, and applications in the diagnosis and prognosis of HCC, to provide a theoretical basis for the diagnosis and treatment of HCC to effectively improve the survival of HCC patients.
Collapse
Affiliation(s)
- Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence to: Yi Xu, Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China. ORCID: https://orcid.org/0000-0003-2720-0005. Tel/Fax: +852-94791847, E-mail: ; Judy Wai Ping Yam, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong 999077, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Correspondence to: Yi Xu, Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China. ORCID: https://orcid.org/0000-0003-2720-0005. Tel/Fax: +852-94791847, E-mail: ; Judy Wai Ping Yam, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong 999077, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| |
Collapse
|
13
|
Wang J, Shen B, Liu X, Jiang J. A novel necroptosis-related lncRNA signature predicts the prognosis and immune microenvironment of hepatocellular carcinoma. Front Genet 2022; 13:985191. [PMID: 36267408 PMCID: PMC9576851 DOI: 10.3389/fgene.2022.985191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the malignant tumors with high mortality and a worse prognosis globally. Necroptosis is a programmed death mediated by receptor-interacting Protein 1 (RIP1), receptor-interacting Protein 1 (RIP3), and Mixed Lineage Kinase Domain-Like (MLKL). Our study aimed to create a new Necroptosis-related lncRNAs (NRlncRNAs) risk model that can predict survival and tumor immunity in HCC patients. The RNA expression and clinical data originated from the TCGA database. Pearson correlation analysis was applied to identify the NRlncRNAs. The LASSO-Cox regression analysis was employed to build the risk model. Next, the ROC curve and the area under the Kaplan-Meier curve were utilized to evaluate the accuracy of the risk model. In addition, based on the two groups of risk model, we performed the following analysis: clinical correlation, differential expression, PCA, TMB, GSEA analysis, immune cells infiltration, and clinical drug prediction analysis. Plus, qRT-PCR was applied to test the expression of genes in the risk model. Finally, a prognosis model covering six necroptosis-related lncRNAs was constructed to predict the survival of HCC patients. The ROC curve results showed that the risk model possesses better accuracy. The 1, 3, and 5-years AUC values were 0.746, 0.712, and 0.670, respectively. Of course, we also observed that significant differences exist in the following analysis, such as functional signaling pathways, immunological state, mutation profiles, and medication sensitivity between high-risk and low-risk groups of HCC patients. The result of qRT-PCR confirmed that three NRlncRNAs were more highly expressed in HCC cell lines than in the normal cell line. In conclusion, based on the bioinformatics analysis, we constructed an NRlncRNAs associated risk model, which predicts the prognosis of HCC patients. Although our study has some limitations, it may greatly contribute to the treatment of HCC and medical progression.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bingbing Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xinyuan Liu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Jianxin Jiang,
| |
Collapse
|
14
|
Identification of Ferroptosis-Related lncRNA Pairs for Predicting the Prognosis of Head and Neck Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7602482. [PMID: 35909900 PMCID: PMC9328971 DOI: 10.1155/2022/7602482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Background Ferrogenesis was strongly associated with tumorigenesis and development, and activating the ferrogenic process was a novel regimen in treating cancer, especially conventional treatment-resistant cancers. The purpose of the article was to construct a ferroptosis-related long noncoding RNAs (FRlncRNAs) signature, regardless of expression levels to effectively predict prognosis and immunotherapeutic response for head and neck squamous cell carcinoma (HNSCC). Methods The RNA-seq data for HNSCC and corresponding clinical information were obtained in the TCGA database, and ferroptosis-related genes (FRGs) were extracted in the ferroptosis database. On this basis, differentially expressed FRlncRNAs (DEFRlncRNAs) pairs were identified through coexpression analysis, differential expression analysis, and a fresh pairing algorithm. Then, a risk assessment model was established with univariate Cox, LASSO, and multivariate Cox regression analysis. Finally, we evaluated the model from various aspects, including survival status, clinicopathological characteristics, infiltration status of immune cells, immune functions, chemotherapeutic sensitivity, immune checkpoint inhibitors (ICIs)-related molecules, and N6-methyladenosine (m6A) mRNA status. Result We established a signature of 11-DEFRlncRNA pairs related to the prognosis of HNSCC that had AUC values above 0.75 in the one-, three-, and five-year ROC curves, underscoring the high susceptibility and specifiability of predicting HNSCC prognosis. Survival rates were remarkably higher for the low-risk patients than for the high-risk patients, and the signature was significantly correlated with survival, clinical, T, and N stages. Finally, immune cell infiltration status, immune functions, chemotherapeutic sensitivity, and expression levels of ICIs-related and m6A-related molecules were statistically different among different groups. Conclusion Our study established a novel lncRNA signature, which is independent of specific expression levels, could predict patient prognosis, and might have promising clinical applications in HNCSS.
Collapse
|
15
|
Li G, Liu Y, Zhang Y, Xu Y, Zhang J, Wei X, Zhang Z, Zhang C, Feng J, Li Q, Wang G. A Novel Ferroptosis-Related Long Non-Coding RNA Prognostic Signature Correlates With Genomic Heterogeneity, Immunosuppressive Phenotype, and Drug Sensitivity in Hepatocellular Carcinoma. Front Immunol 2022; 13:929089. [PMID: 35874689 PMCID: PMC9304774 DOI: 10.3389/fimmu.2022.929089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) with high heterogeneity is a common malignancy worldwide, but effective treatments are limited. Ferroptosis plays a critical role in tumors as a novel iron-dependent and reactive oxygen species-reliant type of cell death. Several studies have shown that long non-coding RNAs (lncRNAs) can drive HCC initiation and progression. However, the prognostic value of ferroptosis-related lncRNAs in patients with HCC has not been explored comprehensively. Gene set variation analysis (GSVA) based on gene set and RNA-seq profiles obtained from public databases indicated that ferroptosis is suppressed in HCC patients. Ferroptosis-related differentially expressed lncRNAs were screened by Pearson’s test. Univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression were performed to establish a novel five ferroptosis-related lncRNA signature in the training cohort with 60% patients, which was further verified in the testing cohort with 40% patients. Dimensionality reduction analysis, Kaplan–Meier curve, receiver operating characteristic (ROC) curve, independent prognostic analysis, and stratification analysis confirmed that our signature had a high clinical application value in predicting the overall survival of HCC patients. Compared to the clinicopathological factors and the other four published HCC prognostic signatures, the current risk model had a better predictive value. The comparison results of functional enrichment, tumor immune microenvironment, genomic heterogeneity, and drug sensitivity between the high- and low-risk groups showed that the risk score is associated with extensive genomic alterations, immunosuppressive tumor microenvironment, and clinical treatment response. Finally, cell experiments showed that silencing LNCSRLR expression inhibited the growth, proliferation, migration, and invasion of the HCC cell line. Thus, the model can function as an efficient indicator for predicting clinical prognosis and treatment of anticancer drugs in HCC patients.
Collapse
Affiliation(s)
- Guanghao Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yongheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yanting Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yao Xu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jin Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xianfu Wei
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhongmin Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jinyan Feng
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Guowen Wang, ; Qiang Li, ; Jinyan Feng,
| | - Qiang Li
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Guowen Wang, ; Qiang Li, ; Jinyan Feng,
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Guowen Wang, ; Qiang Li, ; Jinyan Feng,
| |
Collapse
|
16
|
Xiong Y, Ouyang Y, Fang K, Sun G, Tu S, Xin W, Wei Y, Xiao W. Prediction of Prognosis and Molecular Mechanism of Ferroptosis in Hepatocellular Carcinoma Based on Bioinformatics Methods. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4558782. [PMID: 35774297 PMCID: PMC9239824 DOI: 10.1155/2022/4558782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND As an iron-dependent type of programmed cell death, ferroptosis plays an important role in the pathogenesis and progression of hepatocellular carcinoma (HCC). Long noncoding RNAs (lncRNAs) have been linked to the prognosis of patients with HCC in a number of studies. Nevertheless, the predictive value of lncRNAs (FRLs) associated with ferroptosis in HCC has not been fully elucidated. METHODS Download RNA sequencing data and clinical profiles of HCC patients from The Cancer Genome Atlas (TCGA) database. The FRLs associated with prognosis were determined by Pearson's correlation analysis. After that, prognostic signature for FRLs was established using Cox and LASSO regression analyses. Meanwhile, survival analysis, correlation analysis of clinicopathological features, Cox regression, receiver operating characteristic (ROC) curve, and nomogram were used to analyze the FRL signature's predictive capacity. The relationship between signature risk score, immune cell infiltration, and chemotherapy drug sensitivity is further studied. RESULTS In total, 93 FRLs were found to be of prognostic value in patients with HCC. A five-FRL signature comprising AC015908.3, LINC01138, AC009283.1, Z83851.1, and LUCAT1 was created in order to enhance the prognosis prediction with HCC patients. The signature demonstrated a good predictive potency, according to the Kaplan-Meier and ROC curves. The five-FRL signature was found to be a risk factor independent of various clinical factors using Cox regression and stratified survival analysis. The high-risk group was shown to be enriched in tumorigenesis and immune-related pathways according to GSEA analysis. Additionally, immune cell infiltration, immune checkpoint molecules, and half-inhibitory concentrations differed considerably between risk groups, implying that this signature could be used to evaluate the clinical efficacy of chemotherapy and immunotherapy. CONCLUSION The five-FRL risk signature is helpful for assessing the prognosis of HCC patients and improving therapy options, so it can be further applied clinically.
Collapse
Affiliation(s)
- Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yonghao Ouyang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Kang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Gen Sun
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shuju Tu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wanpeng Xin
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yongyang Wei
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Weidong Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
17
|
Liu ZK, Wu KF, Zhang RY, Kong LM, Shang RZ, Lv JJ, Li C, Lu M, Yong YL, Zhang C, Zheng NS, Li YH, Chen ZN, Bian H, Wei D. Pyroptosis-Related LncRNA Signature Predicts Prognosis and Is Associated With Immune Infiltration in Hepatocellular Carcinoma. Front Oncol 2022; 12:794034. [PMID: 35311105 PMCID: PMC8927701 DOI: 10.3389/fonc.2022.794034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
Pyroptosis is an inflammatory form of programmed cell death that is involved in various cancers, including hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) were recently verified as crucial mediators in the regulation of pyroptosis. However, the role of pyroptosis-related lncRNAs in HCC and their associations with prognosis have not been reported. In this study, we constructed a prognostic signature based on pyroptosis-related differentially expressed lncRNAs in HCC. A co-expression network of pyroptosis-related mRNAs-lncRNAs was constructed based on HCC data from The Cancer Genome Atlas. Cox regression analyses were performed to construct a pyroptosis-related lncRNA signature (PRlncSig) in a training cohort, which was subsequently validated in a testing cohort and a combination of the two cohorts. Kaplan-Meier analyses revealed that patients in the high-risk group had poorer survival times. Receiver operating characteristic curve and principal component analyses further verified the accuracy of the PRlncSig model. Besides, the external cohort validation confirmed the robustness of PRlncSig. Furthermore, a nomogram based on the PRlncSig score and clinical characteristics was established and shown to have robust prediction ability. In addition, gene set enrichment analysis revealed that the RNA degradation, the cell cycle, the WNT signaling pathway, and numerous immune processes were significantly enriched in the high-risk group compared to the low-risk group. Moreover, the immune cell subpopulations, the expression of immune checkpoint genes, and response to chemotherapy and immunotherapy differed significantly between the high- and low-risk groups. Finally, the expression levels of the five lncRNAs in the signature were validated by quantitative real-time PCR. In summary, our PRlncSig model shows significant predictive value with respect to prognosis of HCC patients and could provide clinical guidance for individualized immunotherapy.
Collapse
Affiliation(s)
- Ze-Kun Liu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ke-Fei Wu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ren-Yu Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ling-Min Kong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Run-Ze Shang
- Department of General Surgery, Affiliated Haixia Hospital of Huaqiao University (The 910 Hospital of the Joint Logistics Team), Quanzhou, China
| | - Jian-Jun Lv
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Can Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Meng Lu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Yu-Le Yong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Cong Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Nai-Shan Zheng
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Yan-Hong Li
- Department of Gynaecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Ding Wei
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Zhang Z, Zhang W, Wang Y, Wan T, Hu B, Li C, Ge X, Lu S. Construction and Validation of a Ferroptosis-Related lncRNA Signature as a Novel Biomarker for Prognosis, Immunotherapy and Targeted Therapy in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:792676. [PMID: 35295858 PMCID: PMC8919262 DOI: 10.3389/fcell.2022.792676] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, immunotherapy combined with targeted therapy has significantly prolonged the survival time and improved the quality of life of patients with hepatocellular carcinoma (HCC). However, HCC treatment remains challenging due to the high heterogeneity of this malignancy. Sorafenib, the first-line drug for the treatment of HCC, can inhibit the progression of HCC by inducing ferroptosis. Ferroptosis is associated with the formation of an immunosuppressive microenvironment in tumours. Moreover, long non-coding RNAs (lncRNAs) are strongly associated with ferroptosis and the progression of HCC. Discovery of ferroptosis-related lncRNAs (FR-lncRNAs) is critical for predicting prognosis and the effectiveness of immunotherapy and targeted therapies to improve the quality and duration of survival of HCC patients. Herein, all cases from The Cancer Genome Atlas (TCGA) database were divided into training and testing groups at a 6:4 ratio to construct and validate the lncRNA signatures. Least Absolute Shrinkage and Selection Operator (LASSO) regression and Cox regression analyses were used to screen the six FR-lncRNAs (including MKLN1-AS, LINC01224, LNCSRLR, LINC01063, PRRT3-AS1, and POLH-AS1). Kaplan–Meier (K–M) and receiver operating characteristic (ROC) curve analyses demonstrated the optimal predictive prognostic ability of the signature. Furthermore, a nomogram indicated favourable discrimination and consistency. For further validation, we used real-time quantitative polymerase chain reaction (qRT-PCR) to analyse the expression of LNCSRLR, LINC01063, PRRT3-AS1, and POLH-AS1 in HCC tissues. Moreover, we determined the ability of the signature to predict the effects of immunotherapy and targeted therapy in patients with HCC. Gene set enrichment analysis (GSEA) and somatic mutation analysis showed that ferroptosis-related pathways, immune-related pathways, and TP53 mutations may be strongly associated with the overall survival (OS) outcomes of HCC patients. Overall, our study suggests that a new risk model of six FR-lncRNAs has a significant prognostic value for HCC and that it could contribute to precise and individualised HCC treatment.
Collapse
Affiliation(s)
- Ze Zhang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Wenwen Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Yafei Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Tao Wan
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Bingyang Hu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Chonghui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Xinlan Ge
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| |
Collapse
|
19
|
Chen X, Tu J, Ma L, Huang Y, Yang C, Yuan X. Analysis of Ferroptosis-Related LncRNAs Signatures Associated with Tumor Immune Infiltration and Experimental Validation in Clear Cell Renal Cell Carcinoma. Int J Gen Med 2022; 15:3215-3235. [PMID: 35342303 PMCID: PMC8942346 DOI: 10.2147/ijgm.s354682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most aggressive subtype of renal cell carcinoma. Ferroptosis is an iron-dependent programmed cell death. Long non-coding RNAs (lncRNAs) emerge as a critical role in regulating cancer progression. Objective This study aimed to identify molecular regulation of ferroptosis-related lncRNAs (FRLs) in ccRCC. Methods The prognostic value of FRLs was investigated in ccRCC samples downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset. The FRLs were screened out by Pearson correlation test. The 465 FRLs confirmed as potential prognostic factors through univariate Cox regression analysis were entered into Lasso and multivariate Cox regression to build a FRLs prognostic signature. A risk score based on the prognostic model divided ccRCC patients into low- and high-risk groups. A prognostic nomogram, derived from the prognostic signature and integrating clinical characteristics, was constructed. Gene set enrichment analysis (GSEA) revealed the immune- and tumor-associated pathways. Two distinct clusters were identified with different immune signatures through consensus clustering analysis. The prognostic value of some hub FRLs was externally validated via three GEO datasets (GSE46699, GSE53757 and GSE66272) and online databases. Finally, the three FRLs (LINC00460, LINC00941 and LINC02027) were verified through in vitro experiments. Results The FRLs prognostic signature, including 7 independent prognostic lncRNAs, exhibited good accuracy in predicting overall survival (OS) of ccRCC patients. This signature was correlated with immune infiltration and immune checkpoint blockade (ICB). We correlated two distinct clusters with immune infiltration signature of ccRCC. The worse prognosis of cluster 2 was probably mediated by immune evasion. We also found that the expression levels of LINC00460 and LINC00941 in ccRCC cell lines were higher than those in HK-2 cells, but LINC02027 showed the inverse trend. Conclusion Collectively, our study demonstrated a FRLs prognostic signature which had great clinical value in prognosis assessment.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Correspondence: Xianglin Yuan, Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, People’s Republic of China, Tel/Fax +8602783662683, Email
| |
Collapse
|
20
|
Chen W, Wang H, Li T, Liu T, Yang W, Jin A, Ding L, Zhang C, Pan B, Guo W, Wang B. A novel prognostic model for hepatocellular carcinoma based on 5 microRNAs related to vascular invasion. BMC Med Genomics 2022; 15:34. [PMID: 35197055 PMCID: PMC8867887 DOI: 10.1186/s12920-022-01162-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is prevalent worldwide with a high mortality rate. Prognosis prediction is crucial for improving HCC patient outcomes, but effective tools are still lacking. Characteristics related to vascular invasion (VI), an important process involved in HCC recurrence and metastasis, may provide ideas on prognosis prediction. METHODS Tools, including R 4.0.3, Funrich version 3, Cytoscape 3.8.2, STRING 11.5, Venny 2.1.0, and GEPIA 2, were used to perform bioinformatic analyses. The VI-related microRNAs (miRNAs) were identified using Gene Expression Omnibus HCC miRNA dataset GSE67140, containing 81 samples of HCC with VI and 91 samples of HCC without VI. After further evaluated the identified miRNAs based on The Cancer Genome Atlas database, a prognostic model was constructed via Cox regression analysis. The miRNAs in this model were also verified in HCC patients. Moreover, a nomogram was developed by integrating risk score from the prognostic model with clinicopathological parameters. Finally, a potential miRNA-mRNA network related to VI was established through weighted gene co-expression network analysis of HCC mRNA dataset GSE20017, containing 40 samples of HCC with VI and 95 samples of HCC without VI. RESULTS A prognostic model of 5 VI-related miRNAs (hsa-miR-126-3p, hsa-miR-148a-3p, hsa-miR-15a-5p, hsa-miR-30a-5p, hsa-miR-199a-5p) was constructed. The area under receiver operating characteristic curve was 0.709 in predicting 5-year survival rate, with a sensitivity of 0.74 and a specificity of 0.63. The nomogram containing risk score could also predict prognosis. Moreover, a VI-related miRNA-mRNA network covering 4 miRNAs and 15 mRNAs was established. CONCLUSION The prognostic model and nomogram might be potential tools in HCC management, and the VI-related miRNA-mRNA network gave insights into how VI was developed.
Collapse
Affiliation(s)
- Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Te Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. .,Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China. .,Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China. .,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. .,Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China. .,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Li Q, Jin Y, Shen Z, Liu H, Shen Y, Wu Z. Construction of a Ferroptosis-Related Gene Signature for Head and Neck Squamous Cell Carcinoma Prognosis Prediction. Int J Gen Med 2022; 14:10117-10129. [PMID: 34992433 PMCID: PMC8711242 DOI: 10.2147/ijgm.s343233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant cancers, and few studies have demonstrated the value of ferroptosis-related genes in prognosis. Methods The original counts of RNA sequencing data and clinicopathological data were obtained from TCGA and GSE65858 datasets. Common ferroptosis-related genes related to prognosis were identified from the training set and were included in LASSO to determine the best prognosis. To evaluate the efficacy, time-dependent ROC and Kaplan–Meier (KM) survival analyses were applied. Moreover, univariate and multivariate Cox regression analyses were used to screen independent parameters of prognosis and build a nomogram. Eventually, possible biological pathways were proposed based on GSEA. Results Among 242 ferroptosis-related genes, we identified that the FLT3, IL6, Keap1, NQO1, SOCS1 and TRIB3 genes were significantly connected with HNSCC patient prognosis as a six-gene signature. After, the patients were divided into high- and low-risk groups based on the six-gene signature. The KM survival curves demonstrated that the high-risk group had worse OS (p < 0.0001) and higher AUC values (0.654, 0.735, and 0.679 for 1-, 3-, and 5-year survival, respectively) for the prognostic signature of the six genes compared with other genes, which were also validated in the GSE65858 dataset. Moreover, GSEA suggested that the epithelial mesenchymal transition pathway was abundant and that the mesenchymal status in the high-risk group was substantially higher than that in the low-risk group. Finally, the immune microenvironment and differences in the content of immune cell types were demonstrated. Conclusion We established a six-ferroptosis-related-gene model crossing clinical prognostic parameters that can predict HNSCC patient prognosis and provide a reliable prognostic evaluation tool to assist clinical treatment decisions.
Collapse
Affiliation(s)
- Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Yangli Jin
- Department of Doppler Ultrasonic, Ningbo Yinzhou No.2 Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Huigao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Zhenhua Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
22
|
Liu JW, Supandi F, Dhillon SK. Ferroptosis-Related Long Noncoding RNA Signature Predicts Prognosis of Clear Cell Renal Carcinoma. Folia Biol (Praha) 2022; 68:1-15. [PMID: 36201853 DOI: 10.14712/fb2022068010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is very common and accounts for most kidney cancer deaths. While many studies are being conducted in finding the prognostic signatures of ccRCC, we believe that ferroptosis, which involves programmed cell death dependent on iron accumulation, has therapeutic potential in ccRCC. Recent research has shown that long noncoding RNAs (lncRNAs) are involved in ferroptosis-related tumour processes and are closely related to survival in patients with ccRCC. Hence, in this study we aim to further explore the role of ferroptosis-related lncRNAs (FRLs) in ccRCC, hoping to establish a signature to predict the survival outcome of ccRCC. We analysed transcriptome data from The Cancer Genome Atlas database (TCGA) and ferroptosis-related genes (FRGs) from FerrDb to identify FRLs using Pearson's correlation. Lasso Cox regression analysis and multivariate Cox proportional hazards models screened seventeen optimal FRLs for developing prognostic signatures. Kaplan-Meier survival curves and ROC curves were then plotted for validating the sensitivity, specificity, and accuracy of the identified signatures. Gene Set Enrichment Analysis and CIBERSORT algorithm were deployed to explore the role of these FRLs in the tumour microenvironment. It was concluded that these models demonstrate excellent performance in predicting prognosis among patients with ccRCC, also indicating association with the clinicopathologic parameters such as tumour grade, tumour stage and tumour immune infiltration. In conclusion, our findings provide novel insights into ferroptosis-related lncRNAs in ccRCC, which are important targets for investigating the tumorigenesis of ccRCC.
Collapse
Affiliation(s)
- J W Liu
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia
| | - F Supandi
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia
| | - S K Dhillon
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Zeng Y, Xu Q, Xu N. Long non-coding RNA LOC107985656 represses the proliferation of hepatocellular carcinoma cells through activation of the tumor-suppressive Hippo pathway. Bioengineered 2021; 12:7964-7974. [PMID: 34565286 PMCID: PMC8806957 DOI: 10.1080/21655979.2021.1984005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important regulatory roles in hepatocellular carcinoma (HCC). However, the function of LOC107985656 in HCC progression remains unclear. The lncRNA, mRNA and miRNA levels in HCC tissues or cells were measured using real-time quantitative polymerase chain reaction (RT-qPCR). The proliferation of cancer cells was evaluated using 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) viability and colony formation assays. Bioinformatics prediction, dual luciferase assay and RNA pull-down assay were performed to analyze the relationships between LOC107985656 and miR-106b-5p, or miR-106b-5p and large tumor suppressor 1 (LATS1). The protein expression levels were detected using Western blot. Results showed that LncRNA LOC107985656 was downregulated in HCC tissues and cells. Upregulation of LOC107985656 inhibited the proliferation of HCC cells, whereas its knockdown promoted this phenomenon. LOC107985656 could activate the tumor-suppressive Hippo pathway by repressing yes association protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ) (two homologs of Yki) protein expression in HCC. Further investigation suggested that LOC107985656 regulated the expression of LATS1 by acting as a sponge for absorbing miR-106b-5p in HCC cells. In conclusion, this study unraveled the role of LOC107985656 following a ceRNA (competing endogenous RNAs) mechanism for the miR-106b-5p/LATS1 axis in HCC. The results indicate potential diagnostic and therapeutic applications of LOC107985656 in HCC.
Abbreviations:
HCC: hepatocellular carcinoma; LncRNA: long non-coding RNA; LATS1: large tumor suppressor 1; MTT: 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; YAP: yes association protein; WWTR1: WW domain-containing transcription regulator protein 1; cDNA: single‐stranded complementary DNA; RT-qPCR: real-time quantitative polymerase chain reaction; Radio-Immunoprecipitation Assay (RIPA); BCA: bicinchoninic acid; ASO: antisense oligonucleotide; MST1/2: Ste20-like kinases 1/2; TEAD: TEA domain transcription factor; ceRNA: competing endogenous RNAs.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Internal Medicine, Chenglong Campus Hospital, Sichuan Normal University, Sichuan Province China
| | - Qin Xu
- Department of Infectious Diseases, First Affiliated Hospital of Xinjiang Medical University, Xinjiang China
| | - Nan Xu
- Department of Infectious Diseases, West China Hospital of Sichuan University, Sichuan Province China
| |
Collapse
|
24
|
Chen ZA, Tian H, Yao DM, Zhang Y, Feng ZJ, Yang CJ. Identification of a Ferroptosis-Related Signature Model Including mRNAs and lncRNAs for Predicting Prognosis and Immune Activity in Hepatocellular Carcinoma. Front Oncol 2021; 11:738477. [PMID: 34568075 PMCID: PMC8458836 DOI: 10.3389/fonc.2021.738477] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background Ferroptosis is a novel form of regulated cell death involved in tumor progression. The role of ferroptosis-related lncRNAs in hepatocellular carcinoma (HCC) remains unclear. Methods RNA-seq and clinical data for HCC patients were downloaded from The Cancer Genome Atlas (TCGA) Genomic Data Commons (GDC) portal. Bioinformatics methods, including weighted gene coexpression network analysis (WGCNA), Cox regression, and least absolute shrinkage and selection operator (LASSO) analysis, were used to identify signature markers for diagnosis/prognosis. The tumor microenvironment, immune infiltration and functional enrichment were compared between the low-risk and high-risk groups. Subsequently, small molecule drugs targeting ferroptosis-related signature components were predicted via the L1000FWD and PubChem databases. Results The prognostic model consisted of 2 ferroptosis-related mRNAs (SLC1A5 and SLC7A11) and 8 ferroptosis-related lncRNAs (AC245297.3, MYLK-AS1, NRAV, SREBF2-AS1, AL031985.3, ZFPM2-AS1, AC015908.3, MSC-AS1). The areas under the curves (AUCs) were 0.830 and 0.806 in the training and test groups, respectively. Decision curve analysis (DCA) revealed that the ferroptosis-related signature performed better than all pathological characteristics. Multivariate Cox regression analysis showed that the risk score was an independent prognostic factor. The survival probability of low- and high-risk patients could be clearly distinguished by the principal component analysis (PCA) plot. The risk score divided HCC patients into two distinct groups in terms of immune status, especially checkpoint gene expression, which was further supported by the Gene Ontology (GO) biological process, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, several small molecule drugs (SIB-1893, geldanamycin and PD-184352, etc) targeting ferroptosis-related signature components were identified for future reference. Conclusion We constructed a new ferroptosis-related mRNA/lncRNA signature for HCC patients. The model can be used for prognostic prediction and immune evaluation, providing a reference for immunotherapies and targeted therapies.
Collapse
Affiliation(s)
- Zi-An Chen
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Tian
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dong-Mei Yao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhi-Jie Feng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan-Jie Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|