1
|
Kumari A, Sopory SK, Joshi R. Unraveling the intricate tapestry of bamboo transcription factors in abiotic stress signaling and resilience with special reference to moso bamboo family. Biochim Biophys Acta Gen Subj 2025; 1869:130755. [PMID: 39740732 DOI: 10.1016/j.bbagen.2024.130755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
The abiotic stress tolerance mechanism in plants is regulated by multiple physiological, biochemical, and molecular processes; hence, omics approaches to underpin these mechanisms are essential. It is clear that transcription factors (TFs) are one of the fundamental molecular switches that play a crucial role in modulating, regulating, and orchestrating plants in response to various climatic vagaries. Several reports are available now, focusing on understanding the roles of TFs, including those in Poaceae family in regulating different biological processes and stress responses. However, research on bamboo TFs' regulatory role in providing abiotic stress tolerance is limited. Hence the present review offers innovative insights into unraveling the molecular regulation of known family of TFs in different species of bamboo which have been identified as regulators of transcript abundance in numerous genes responsive to various abiotic stresses. Additionally, this review highlights recent discoveries concerning bamboo TFs, encompassing their classification, promoter analysis and functional dynamics in response to different abiotic stresses. Attempt has also been made to delve into the molecular interplay and cross-talk among these TFs during abiotic stresses, thus proposing potential strategies for enhancing the intricate regulatory networks involved in the adaptive responses of bamboo species.
Collapse
Affiliation(s)
- Anita Kumari
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
2
|
Kong L, Sun J, Jiang Z, Ren W, Wang Z, Zhang M, Liu X, Wang L, Ma W, Xu J. Identification and expression analysis of YABBY family genes in Platycodon grandiflorus. PLANT SIGNALING & BEHAVIOR 2023; 18:2163069. [PMID: 36681901 PMCID: PMC9870009 DOI: 10.1080/15592324.2022.2163069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Platycodon grandiflorus set ornamental, edible, and medicinal plant with broad prospects for further application development. However, there are no reports on the YABBY transcription factor in P. grandiflorus. Identification and analysis of the YABBY gene family of P. grandiflorus using bioinformatics means. Six YABBY genes were identified and divided into five subgroups. Transcriptome data and qRT-PCR were used to analyze the expression patterns of YABBY. YABBY genes exhibited organ-specific patterns in expression in P grandiflorus. Upon salt stress and drought induction, P. grandiflorus presented different morphological and physiological changes with some dynamic changes. Under salt treatment, the YABBY gene family was down-regulated; PgYABBY5 was up-regulated in leaves at 24 h. In drought treatment, PgYABBY1, PgYABBY2, and PgYABBY3 were down-regulated to varying degrees, but PgYABBY3 was significantly up-regulated in the roots. PgYABBY5 was up-regulated gradually after being down-regulated. PgYABBY5 was significantly up-regulated in stem and leaf at 48 h. PgYABBY6 was down-regulated at first and then significantly up-regulated. The dynamic changes of salt stress and drought stress can be regarded as the responses of plants to resist damage. During the whole process of salt and drought stress treatment, the protein content of each tissue part of P grandiflorus changed continuously. At the same time, we found that the promoter region of the PgYABBY gene contains stress-resistant elements, and the regulatory role of YABBY transcription factor in the anti-stress mechanism of P grandiflorus remains to be studied. PgYABBY1, PgYABBY2, and PgYABBY5 may be involved in the regulation of saponins in P. grandiflorus. PgYABBY5 may be involved in the drought resistance mechanism in P. grandiflorus stems and leaves. This study may provide a theoretical basis for studying the regulation of terpenoids by the YABBY transcription factor and its resistance to abiotic stress.
Collapse
Affiliation(s)
- Lingyang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiaying Sun
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhehui Jiang
- School of Forestry,Northeast Forestry University, HarbinChina
| | - Weichao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Zhang
- School of Forestry,Northeast Forestry University, HarbinChina
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Traditional Chinese Medicine (TCM), Jiamusi, China
| | - Lijuan Wang
- Ophthalmology Hospital in Heilongjiang province, Harbin, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- School of Forestry,Northeast Forestry University, HarbinChina
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jiao Xu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- College of Jiamusi, Heilongjiang University of Traditional Chinese Medicine (TCM), Jiamusi, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
3
|
Zheng Q, Zhao X, Huang Y, Zhang MM, He X, Ke S, Li Y, Zhang C, Ahmad S, Lan S, Li M, Liu ZJ. Genome-Wide Identification of the YABBY Gene Family in Dendrobium Orchids and Its Expression Patterns in Dendrobium chrysotoxum. Int J Mol Sci 2023; 24:10165. [PMID: 37373311 DOI: 10.3390/ijms241210165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The small plant-specific YABBY gene family plays key roles in diverse developmental processes in plants. Dendrobium chrysotoxum, D. huoshanense, and D. nobile are perennial herbaceous plants belonging to Orchidaceae with a high ornamental value. However, the relationships and specific functions of the YABBY genes in the Dendrobium species remain unknown. In this study, six DchYABBYs, nine DhuYABBYs, and nine DnoYABBYs were identified from the genome databases of the three Dendrobium species, which were unevenly distributed on five, eight, and nine chromosomes, respectively. The 24 YABBY genes were classified into four subfamilies (CRC/DL, INO, YAB2, and FIL/YAB3) based on their phylogenetic analysis. A sequence analysis showed that most of the YABBY proteins contained conserved C2C2 zinc-finger and YABBY domains, while a gene structure analysis revealed that 46% of the total YABBY genes contained seven exons and six introns. All the YABBY genes harbored a large number of Methyl Jasmonate responsive elements, as well as anaerobic induction cis-acting elements in the promoter regions. Through a collinearity analysis, one, two, and two segmental duplicated gene pairs were identified in the D. chrysotoxum, D. huoshanense, and D. nobile genomes, respectively. The Ka/Ks values of these five gene pairs were lower than 0.5, indicating that the Dendrobium YABBY genes underwent negative selection. In addition, an expression analysis revealed that DchYABBY2 plays a role in ovary and early-stage petal development, while DchYABBY5 is essential for lip development and DchYABBY6 is crucial for early sepal formation. DchYABBY1 primarily regulates sepals during blooming. Furthermore, there is the potential involvement of DchYABBY2 and DchYABBY5 in gynostemium development. The results of a comprehensive genome-wide study would provide significant clues for future functional investigations and pattern analyses of YABBY genes in different flower parts during flower development in the Dendrobium species.
Collapse
Affiliation(s)
- Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minghe Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Mazhar HSUD, Shafiq M, Ali H, Ashfaq M, Anwar A, Tabassum J, Ali Q, Jilani G, Awais M, Sahu R, Javed MA. Genome-Wide Identification, and In-Silico Expression Analysis of YABBY Gene Family in Response to Biotic and Abiotic Stresses in Potato (Solanum tuberosum). Genes (Basel) 2023; 14:genes14040824. [PMID: 37107580 PMCID: PMC10137784 DOI: 10.3390/genes14040824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
YABBY is among the specific transcription factor (TF) gene family in plants and plays an important role in the development of the leaves and floral organs. Its specific roles include lateral organ development, the establishment of dorsoventral polarity, and response to abiotic stress. Potato is an important crop worldwide and YABBY genes are not still identified and characterized in potato. So, little has been known about YABBY genes in potato until now. This study was carried out to perform genome-wide analysis, which will provide an in-depth analysis about the role of YABBY genes in potato. There have been seven StYAB genes identified, which are found to be located on seven different chromosomes. Through multiple sequence analyses, it has been predicted that the YABBY domain was present in all seven genes while the C2-C2 domain was found to be absent only in StYAB2. With the help of cis-element analysis, the involvement of StYAB genes in light, stress developmental, and hormonal responsiveness has been found. Furthermore, expression analysis from RNA-seq data of different potato organs indicated that all StYAB genes have a role in the vegetative growth of the potato plant. In addition to this, RNA-seq data also identified StYAB3, StYAB5, and StYAB7 genes showing expression during cadmium, and drought stress, while StYAB6 was highly expressed during a viral attack. Moreover, during the attack of Phytophthora infestans on a potato plant StYAB3, StYAB5, StYAB6, and StYAB7 showed high expression. This study provides significant knowledge about the StYAB gene structures and functions, which can later be used for gene cloning, and functional analysis; this information may be utilized by molecular biologists and plant breeders for the development of new potato lines.
Collapse
|
5
|
Zhao S, Zhang Y, Tan M, Jiao J, Zhang C, Wu P, Feng K, Li L. Identification of YABBY Transcription Factors and Their Function in ABA and Salinity Response in Nelumbo nucifera. PLANTS (BASEL, SWITZERLAND) 2023; 12:380. [PMID: 36679092 PMCID: PMC9866709 DOI: 10.3390/plants12020380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The plant-specific transcription factor family YABBY plays important roles in plant responses to biotic and abiotic stresses. Although the function of YABBY has been identified in many species, systematic analysis in lotus (Nelumbo nucifera) is still relatively lacking. The present study aimed to characterize all of the YABBY genes in lotus and obtain better insights into NnYABBYs in response to salt stress by depending on ABA signaling. Here, we identified nine YABBY genes by searching the whole lotus genome based on the conserved YABBY domain. Further analysis showed that these members were distributed on six different chromosomes and named from YABBY1 to YABBY9, which were divided into five subgroups, including YAB1, YAB2, YAB5, INO, and CRC. The analysis of cis-elements in promotors revealed that NnYABBYs could be involved in plant hormone signaling and plant responses to abiotic stresses. Quantitative real-time PCR (qRT-PCR) showed that NnYABBYs could be up-regulated or down-regulated by ABA, fluridone, and salt treatment. Subcellular localization indicated that NnYABBY4, NnYABBY5, and NnYABBY6 were mainly localized in the cell membrane and cytoplasm. In addition, the intrinsic trans-activity of NnYABBY was tested by a Y2H assay, which revealed that NnYABBY4, NnYABBY5, and NnYABBY6 are deprived of such a property. This study provided a theoretical basis and reference for the functional research of YABBY for the molecular breeding of lotus.
Collapse
Affiliation(s)
- Shuping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yao Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengying Tan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiao Jiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Chuyan Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Genome-Wide Characterization and Identification of the YABBY Gene Family in Mango (Mangifera indica). DIVERSITY 2022. [DOI: 10.3390/d14100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
YABBY is a specific transcription factor gene family in plants. It has the typical N-terminal C2C2-type zinc-finger domain and the C-terminal YABBY conservative structure domain, which play an important role in the development of the leaves and floral organs. The YABBY gene family directs leaf polarity in mango, playing an important role in maintaining species specificity. In this study, a total of seven YABBY genes were identified in the mango (Mangifera indica) genome. The seven YABBY family members possessed both typical C2C2 and YABBY domains. A phylogenetic tree was constructed based on the amino acid sequences of the 42 YABBY proteins of mango, Arabidopsis, apple, grape, and peach. The phylogenetic tree indicated that the members of the mango YABBY family could be divided into three subfamilies, including CRC, YAB5, and YAB3. Quantitative real-time PCR showed that the transcription levels of the MiYABBYs were significantly different under biotic and abiotic stresses. The transcription level of MiYABBY7 was significantly down-regulated at 0–72 h after Xanthomonas campestris pv. mangiferaeindicae infection, methyl jasmonate and salicylic acid stresses. The MiYABBY1 transcription level was significantly down-regulated at 0–72 h after Colletotrichum gloeosporioides infection. MiYABBYs were expressed specifically in different leaves and fruit, and MiYABBY6 was significantly up-regulated during leaf and fruit development. However, MiYABBY5 showed a contrary transcriptional pattern during leaf and fruit development. This is first report on the mango YABBY gene family at the genome-wide level. These results will be beneficial for understanding the biological functions and molecular mechanisms of YABBY genes.
Collapse
|
7
|
Del Giudice L, Bazakos C, Vassiliou MF. Study of genetic variation and its association with tensile strength among bamboo species through whole genome resequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:935751. [PMID: 35968086 PMCID: PMC9365670 DOI: 10.3389/fpls.2022.935751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is a versatile plant species that is widely used as a construction material by many low-income countries due to the lack of major construction materials such as steel and reinforced concrete. It is also widely used in China. Bamboo is an economically sustainable material that behaves exceptionally in natural disasters such as earthquakes and it can offer viable solutions for contemporary engineering challenges. Despite bamboo's potential in the engineering sector, biological features such as its long generation time, its large genome size, and its polyploidy are constraining factors for genetic and genomic studies that potentially can assist the breeding efforts. This study re-sequenced 8 Phyllostachys species and 18 natural accessions of Ph. edulis, generating a large set of functionally annotated molecular markers (Single Nucleotide Polymorphisms (SNPs) and InDels) providing key genomic resource information. Moreover, all this genomic information was used to carry out a preliminary genome-wide association analysis and several candidate genes were identified to be correlated with a mechanical property that is of high interest to structural engineers: its tensile strength normal to its fibers (i.e., splitting).
Collapse
Affiliation(s)
- Lorenzo Del Giudice
- Chair of Seismic Design and Analysis, Institute of Structural Engineering, ETH Zurich, Zurich, Switzerland
| | - Christos Bazakos
- Chair of Seismic Design and Analysis, Institute of Structural Engineering, ETH Zurich, Zurich, Switzerland
- Institute of Plant Breeding and Genetic Resources, ELGO-Dimitra, Thessaloniki, Greece
- Joint Laboratory of Horticulture, ELGO-Dimitra, Thessaloniki, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Michalis F. Vassiliou
- Chair of Seismic Design and Analysis, Institute of Structural Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Hao L, Zhang J, Shi S, Li P, Li D, Zhang T, Guo H. Identification and expression profiles of the YABBY transcription factors in wheat. PeerJ 2022; 10:e12855. [PMID: 35186463 PMCID: PMC8818270 DOI: 10.7717/peerj.12855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND YABBY is a plant-specific transcription factor (TF) that belongs to the zinc finger protein superfamily and is composed of a C2-C2 domain at the N-terminus and a YABBY domain at the C-terminus. It plays a role in plant development and growth. METHODS In this study, 20 YABBY TFs were identified in the wheat genome. Phylogenetic relationships, collinearity relationships, gene structures, conserved motifs, and expression patterns were analyzed. RESULTS Twenty TaYABBY TFs were distributed unevenly on 15 chromosomes. Collinearity analysis showed that these genes have a close relationship with monocot plants. The phylogenetic tree of wheat YABBYs classified these TaYABBYs into FIL, YAB2, INO, and CRC clades. Gene structure and conserved motif analyses showed that they share similar components in the same clades. Expression profile analysis showed that many TaYABBY genes have high expression levels in leaf tissues and are regulated by abiotic stresses, especially salt stress. Our results provide a basis for further functional characterization of the YABBY gene family.
Collapse
Affiliation(s)
- Lidong Hao
- Xinjiang Agricultural University, College of Agriculture, Urumqi, Xinjiang, China,Suihua University, College of Agriculture and Hydraulic Engineering, Suihua, Heilongjiang, China
| | - Jinshan Zhang
- Xinjiang Agricultural University, College of Agriculture, Urumqi, Xinjiang, China
| | - Shubing Shi
- Xinjiang Agricultural University, College of Agriculture, Urumqi, Xinjiang, China
| | - Peng Li
- Xinjiang Agricultural University, College of Agriculture, Urumqi, Xinjiang, China
| | - Dandan Li
- Xinjiang Agricultural University, College of Agriculture, Urumqi, Xinjiang, China
| | - Tianjiao Zhang
- Suihua University, College of Agriculture and Hydraulic Engineering, Suihua, Heilongjiang, China
| | - Haibin Guo
- Suihua University, College of Agriculture and Hydraulic Engineering, Suihua, Heilongjiang, China
| |
Collapse
|
9
|
Said A, Janjua MU, Hassan SU, Muzammal Z, Saleem T, Thaipisutikul T, Tuarob S, Nawaz R. Detailed analysis of Ethereum network on transaction behavior, community structure and link prediction. PeerJ Comput Sci 2021; 7:e815. [PMID: 34977356 PMCID: PMC8670368 DOI: 10.7717/peerj-cs.815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/23/2021] [Indexed: 05/04/2023]
Abstract
Ethereum, the second-largest cryptocurrency after Bitcoin, has attracted wide attention in the last few years and accumulated significant transaction records. However, the underlying Ethereum network structure is still relatively unexplored. Also, very few attempts have been made to perform link predictability on the Ethereum transactions network. This paper presents a Detailed Analysis of the Ethereum Network on Transaction Behavior, Community Structure, and Link Prediction (DANET) framework to investigate various valuable aspects of the Ethereum network. Specifically, we explore the change in wealth distribution and accumulation on Ethereum Featured Transactional Network (EFTN) and further study its community structure. We further hunt for a suitable link predictability model on EFTN by employing state-of-the-art Variational Graph Auto-Encoders. The link prediction experimental results demonstrate the superiority of outstanding prediction accuracy on Ethereum networks. Moreover, the statistic usages of the Ethereum network are visualized and summarized through the experiments allowing us to formulate conjectures on the current use of this technology and future development.
Collapse
Affiliation(s)
- Anwar Said
- Department of Computer Science, Information Technology University, Lahore, Pakistan
| | - Muhammad Umar Janjua
- Department of Computer Science, Information Technology University, Lahore, Pakistan
| | - Saeed-Ul Hassan
- Department of Computing and Mathematics, The Manchester Metropolitan University, Manchester, United Kingdom
| | - Zeeshan Muzammal
- Department of Computer Science, Information Technology University, Lahore, Pakistan
| | - Tania Saleem
- Department of Computer Science, Information Technology University, Lahore, Pakistan
| | - Tipajin Thaipisutikul
- Faculty of Information and Communication Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Suppawong Tuarob
- Faculty of Information and Communication Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Raheel Nawaz
- Department of Operations, Technology, Events and Hospitality Management, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|