1
|
Weirich CE, Marques MR, de Castro AP, Assumpção Benitez B, Roque FDO, Marchetti CR, Rodrigues AD, de Lima DP, Dos Santos EDA. Impact of Iron Mining Activity on the Endophytic Fungal Community of Aspilia grazielae. J Fungi (Basel) 2023; 9:632. [PMID: 37367568 DOI: 10.3390/jof9060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023] Open
Abstract
Aspilia grazielae (J. U. Santos) is an endemic plant species in Morro do Urucum in the Pantanal wetland (Brazil). A. grazielae is used for the restoration of areas impacted by iron mining activities. This study evaluates the diversity (composition, value and abundance) of endophytic fungal communities, considering parts of the plant and soil condition. The leaves and roots of A. grazielae were collected from native vegetation areas (NVA) and recovery areas (RCA) in Morro do Urucum. Illumina sequencing technology was used to investigate variation in endophytic fungal biodiversity. The operational taxonomic units detected in NVA ranged from 183 to 263 (leaf) and 115 to 285 (root), while RCA samples ranged from 200 to 282 (leaf) and 156 to 348 (root). Ascomycota phylum was the most common species among all plant samples. The most significant classes identified were Lecanoromycetes and Dothideomycetes that differed significantly (p ≤ 0.05) according to their plant hosts and soil stress. The relative abundance of Pestalotiopsis (Sordariomycetes class) and Stereocaulon (Lecanoromycetes class) genera was influenced by the iron mining activities according to the leaf samples analysed. However, the abundance and wealth of endophytic fungal communities in A. grazielae from RCA were evidence that could explain their high resilience to environmental disturbances and the source-sink dynamics of fungal propagules.
Collapse
Affiliation(s)
- Carlos Eduardo Weirich
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Maria Rita Marques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Alinne Pereira de Castro
- Departamento de Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil
| | | | - Fabio de Oliveira Roque
- Programa de Pós-Graduação em Ecologia e Conservação, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Centre for Tropical Environmental and Sustainability Science (TESS), James Cook University, Cairns, QLD 4878, Australia
| | - Clarice Rossato Marchetti
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Amanda Dal'Ongaro Rodrigues
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Dênis Pires de Lima
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Edson Dos Anjos Dos Santos
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
2
|
Nguyen NH, Nguyen PT, Otake H, Nagata A, Hirano N, Imanishi-Shimizu Y, Shimizu K. Biodiversity of Basidiomycetous Yeasts Associated with Cladonia rei Lichen in Japan, with a Description of Microsporomyces cladoniophilus sp. nov. J Fungi (Basel) 2023; 9:jof9040473. [PMID: 37108927 PMCID: PMC10145395 DOI: 10.3390/jof9040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
For more than a century, lichens have been used as an example of dual-partner symbiosis. Recently, this has been challenged by the discovery of various basidiomycetous yeasts that coexist in multiple lichen species, among which Cladonia lichens from Europe and the United States were discovered to be highly specifically associated with the basidiomycetous yeast of the family Microsporomycetaceae. To verify this highly specific relationship, we investigated the diversity of basidiomycetous yeasts associated with Cladonia rei, a widely distributed lichen in Japan, by applying two approaches: yeast isolation from the lichen thalli and meta-barcoding analysis. We obtained 42 cultures of Cystobasidiomycetous yeast which were grouped into six lineages within the family Microsporomycetaceae. Unexpectedly, although the cystobasidiomycetes-specific primer was used, not only the cystobasidiomycetous yeasts but species from other classes were also detected via the meta-barcoding dataset; in particular, pucciniomycetous yeasts were found at a high frequency in some samples. Further, Halobasidium xiangyangense, which was detected in every sample with high abundance, is highly likely a generalist epiphytic fungus that has the ability to associate with C. rei. In the pucciniomycetous group, most of the detected species belong to the scale insect-associated yeast Septobasidium genus. In conclusion, even though Microsporomyces species are not the only yeast group associated with Cladonia lichen, our study demonstrated that the thalli of Cladonia rei lichen could be a suitable habit for them.
Collapse
Affiliation(s)
- Ngoc-Hung Nguyen
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Phuong-Thao Nguyen
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Hitomi Otake
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Ayana Nagata
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Nobuharu Hirano
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Yumi Imanishi-Shimizu
- College of Science and Engineering, Kanto Gakuin University, Mutsuura-higashi 1-50-1, Kanazawa-ku, Yokohama 236-8501, Kanagawa, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
- Medical Mycology Research Center, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8673, Chiba, Japan
| |
Collapse
|
3
|
Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J Fungi (Basel) 2022; 8:jof8030226. [PMID: 35330228 PMCID: PMC8955040 DOI: 10.3390/jof8030226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.
Collapse
|