1
|
Costa S, Minucci A, Kumawat A, De Bonis M, Prontera G, Gelsomino M, Tana M, Tiberi E, Romano A, Ruggiero A, Mastrangelo S, Palumbo G, Giorgio V, Onori ME, Bolognesi M, Camilloni C, Luzzatto L, Vento G. Pathogenic G6PD variants: Different clinical pictures arise from different missense mutations in the same codon. Br J Haematol 2024; 205:1985-1994. [PMID: 39295190 DOI: 10.1111/bjh.19775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
G6PD deficiency results from mutations in the X-linked G6PD gene. More than 200 variants are associated with enzyme deficiency: each one of them may either cause predisposition to haemolytic anaemia triggered by exogenous agents (class B variants), or may cause a chronic haemolytic disorder (class A variants). Genotype-phenotype correlations are subtle. We report a rare G6PD variant, discovered in a baby presenting with severe jaundice and haemolytic anaemia since birth: the mutation of this class A variant was found to be p.(Arg454Pro). Two variants affecting the same codon were already known: G6PD Union, p.(Arg454Cys), and G6PD Andalus, p.(Arg454His). Both these class B variants and our class A variant exhibit severe G6PD deficiency. By molecular dynamics simulations, we performed a comparative analysis of the three mutants and of the wild-type G6PD. We found that the tetrameric structure of the enzyme is not perturbed in any of the variants; instead, loss of the positively charged Arg residue causes marked variant-specific rearrangement of hydrogen bonds, and it influences interactions with the substrates G6P and NADP. These findings explain severe deficiency of enzyme activity and may account for p.(Arg454Pro) expressing a more severe clinical phenotype.
Collapse
Affiliation(s)
- Simonetta Costa
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Minucci
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Amit Kumawat
- Department of Biosciences, University of Milano, Milan, Italy
| | - Maria De Bonis
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgia Prontera
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mariannita Gelsomino
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Milena Tana
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eloisa Tiberi
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alberto Romano
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Ruggiero
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Mastrangelo
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Palumbo
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Giorgio
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Elisabetta Onori
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Milan, Italy
- Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università degli Studi di Milano, Milan, Italy
| | - Carlo Camilloni
- Department of Biosciences, University of Milano, Milan, Italy
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania
- Department of Hematology, University of Florence, Firenze, Italy
| | - Giovanni Vento
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
2
|
Sang Y, Huang X, Li H, Hong T, Zheng M, Li Z, Jiang Z, Ni H, Li Q, Zhu Y. Improving the thermostability of Pseudoalteromonas Porphyrae κ-carrageenase by rational design and MD simulation. AMB Express 2024; 14:8. [PMID: 38245573 PMCID: PMC10799840 DOI: 10.1186/s13568-024-01661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
The industrial applications of the κ-carrageenases have been restricted by their poor thermostability. In this study, based on the folding free energy change (ΔΔG) and the flexibility analysis using molecular dynamics (MD) simulation for the alkaline κ-carrageenase KCgCD from Pseudoalteromonas porphyrae (WT), the mutant S190R was identified with improved thermostability. After incubation at 50 °C for 30 min, the residual activity of S190R was 63.7%, 25.7% higher than that of WT. The Tm values determined by differential scanning calorimetry were 66.2 °C and 64.4 °C for S190R and WT, respectively. The optimal temperature of S190R was 10 °C higher than that of WT. The κ-carrageenan hydrolysates produced by S190R showed higher xanthine oxidase inhibitory activity compared with the untreated κ-carrageenan. MD simulation analysis of S190R showed that the residues (V186-M194 and P196-G197) in F5 and the key residue R150 in F3 displayed the decreased flexibility, and residues of T169-N173 near the catalytic center displayed the increased flexibility. These changed flexibilities might be the reasons for the improved thermostability of mutant S190R. This study provides a useful rational design strategy of combination of ΔΔG calculation and MD simulation to improve the κ-carrageenase's thermostability for its better industrial applications.
Collapse
Affiliation(s)
- Yuyan Sang
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
| | - Xiaoyi Huang
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
| | - Hebin Li
- Department of Pharmacy, Xiamen Medical College, 361008, Xiamen, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China.
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China.
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China.
| |
Collapse
|
3
|
Alakbaree M, Abdulsalam AH, Ahmed HH, Ali FH, Al-Hili A, Omar MSS, Alonazi M, Jamalis J, Latif NA, Hamza MA, Amran SI. A computational study of structural analysis of Class I human glucose-6-phosphate dehydrogenase (G6PD) variants: Elaborating the correlation to chronic non-spherocytic hemolytic anemia (CNSHA). Comput Biol Chem 2023; 104:107873. [PMID: 37141793 DOI: 10.1016/j.compbiolchem.2023.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect that affects more than 500 million people worldwide. Individuals affected with G6PD deficiency may occasionally suffer mild-to-severe chronic hemolytic anemia. Chronic non-spherocytic hemolytic anemia (CNSHA) is a potential result of the Class I G6PD variants. This comparative computational study attempted to correct the defect in variants structure by docking the AG1 molecule to selected Class I G6PD variants [G6PDNashville (Arg393His), G6PDAlhambra (Val394Leu), and G6PDDurham (Lys238Arg)] at the dimer interface and structural NADP+ binding site. It was followed by an analysis of the enzyme conformations before and after binding to the AG1 molecule using the molecular dynamics simulation (MDS) approach, while the severity of CNSHA was determined via root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen bonds, salt bridges, radius of gyration (Rg), solvent accessible surface area analysis (SASA), and principal component analysis (PCA). The results revealed that G6PDNashville (Arg393His) and G6PDDurham (Lys238Arg) had lost the direct contact with structural NADP+ and salt bridges at Glu419 - Arg427 and Glu206 - Lys407 were disrupted in all selected variants. Furthermore, the AG1 molecule re-stabilized the enzyme structure by restoring the missing interactions. Bioinformatics approaches were also used to conduct a detailed structural analysis of the G6PD enzyme at a molecular level to understand the implications of these variants toward enzyme function. Our findings suggest that despite the lack of treatment for G6PDD to date, AG1 remains a novel molecule that promotes activation in a variety of G6PD variants.
Collapse
Affiliation(s)
- Maysaa Alakbaree
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.
| | | | - Haron H Ahmed
- Ibn Sina University for Medical and Pharmaceutical Sciences, Faculty of Medicine, Baghdad, Iraq
| | - Farah Hasan Ali
- Department of Radiology and Ultrasound, Al-Farahidi University, Collage of Medical Technology, Baghdad, Iraq
| | - Ahmed Al-Hili
- Department of Anesthesia, Al-Farahidi University, Collage of Medical Technology, Baghdad, Iraq
| | | | - Mona Alonazi
- Department of Biochemistry, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Nurriza Ab Latif
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Muaawia Ahmed Hamza
- Faculty of Medicine, King Fahad Medical City, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Syazwani Itri Amran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
4
|
Shen S, Xiong Q, Cai W, Hu R, Zhou B, Hu X. Molecular heterogeneity of glucose-6-phosphate dehydrogenase deficiency in neonates in Wuhan: Description of four novel variants. Front Genet 2022; 13:994015. [PMID: 36212142 PMCID: PMC9533060 DOI: 10.3389/fgene.2022.994015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common X-linked enzymopathies caused by G6PD gene variant. The aim of this study was to investigate the molecular epidemiological characteristic of the G6PD deficiency among newborn screening population in Wuhan region. A total of 430,806 healthy neonates in Wuhan area of China were screened for G6PD deficiency from November 2016 to December 2021. The positive samples were further detected with gene analysis. Among the 957 neonates with abnormal G6PD enzyme activity, the prevalence of G6PD deficiency in Wuhan was calculated as 0.22%. 38 genotypes were found and the top 5 frequencies of G6PD gene variants were c.1388G > A, c.1376G > T, c.95A > G, c.1024C > T and c.871G > A. Seven rare single variants (c.25C > T, c.152C > T, c.406C > T, c.497G > A, c.679C > T, c.854G > A and c.1057C > T) and two rare multiple variants (IVS-5 637/638T del/c.1311C > T/1365-13T > C and c.406C > T/c.1311C > T/1365-13T > C) were discovered in this study. In addition, four novel variants (c.49C > T, c.691G > A, c.857A > T and c.982G > A) were detected out in our cohort, which have never been reported before. The result indicated that a rich diversity of G6PD genetic variants in Wuhan region, also had its own regional characteristic. Our data provided the basic knowledge for future prevention and research of G6PD deficiency and the findings will be useful for genetic counseling and prenatal diagnosis of G6PD deficiency in the Wuhan region.
Collapse
|