1
|
Li Q, Imran. Using biochar, compost, and dry-based organic amendments in combination with mycorrhizae for mitigating heavy metal contamination in soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-12. [PMID: 40364482 DOI: 10.1080/15226514.2025.2502458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Water scarcity has led to the increased use of untreated wastewater for irrigation, contributing to heavy metal (HM) accumulation in soils and crops. This study evaluated the effectiveness of organic amendments and arbuscular mycorrhizal fungi (AMF) in reducing HM bioavailability and enhancing plant growth. A two-year pot experiment (2022-2023) was conducted using eight treatments (T1-T8) and three replicates each. Treatments included: T1 (Control), T2 Rice straw, T3, rice straw compost, T4, rice straw biochar, T5, AMF, T6, Straw + AMF, T7, compost + AMF, and T8, biochar + AMF. Post-harvest analysis showed that T7 and T8 significantly reduced soil and plant HM levels. T8 was the most effective, reducing Pb, Cd, and Ni in grains by up to 93%, 76%, and 83%, respectively. Shoot HM concentrations declined by 22%-52%, and grain uptake dropped by 58%-92%. T8 also improved shoot and root dry weights by 66% and 48%, and grain yield by 56%. Root colonization and mycorrhizal intensity increased significantly, along with urease (78%) and catalase (156%) activities. Results highlight the potential of T8 (biochar + AMF) as a sustainable strategy for remediating contaminated soils and improving crop productivity.
Collapse
Affiliation(s)
- Quanheng Li
- Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming, China
- Research Center for Earth System Science, Yunnan University, Kunming, China
| | - Imran
- College of Engineering, South China Agriculture University, Guangzhou, China
| |
Collapse
|
2
|
Golubev S, Rasterkovskaya M, Sungurtseva I, Burov A, Muratova A. Phenanthrene-Degrading and Nickel-Resistant Neorhizobium Strain Isolated from Hydrocarbon-Contaminated Rhizosphere of Medicago sativa L. Microorganisms 2024; 12:1586. [PMID: 39203428 PMCID: PMC11356111 DOI: 10.3390/microorganisms12081586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Pollutant degradation and heavy-metal resistance may be important features of the rhizobia, making them promising agents for environment cleanup biotechnology. The degradation of phenanthrene, a three-ring polycyclic aromatic hydrocarbon (PAH), by the rhizobial strain Rsf11 isolated from the oil-polluted rhizosphere of alfalfa and the influence of nickel ions on this process were studied. On the basis of whole-genome and polyphasic taxonomy, the bacterium Rsf11 represent a novel species of the genus Neorhizobium, so the name Neorhizobium phenanthreniclasticum sp. nov. was proposed. Analysis of phenanthrene degradation by the Rsf1 strain revealed 1-hydroxy-2-naphthoic acid as the key intermediate and the activity of two enzymes apparently involved in PAH degradation. It was also shown that the nickel resistance of Rsf11 was connected with the extracellular adsorption of metal by EPS. The joint presence of phenanthrene and nickel in the medium reduced the degradation of PAH by the microorganism, apparently due to the inhibition of microbial growth but not due to the inhibition of the activity of the PAH degradation enzymes. Genes potentially involved in PAH catabolism and nickel resistance were discovered in the microorganism studied. N. phenanthreniclasticum strain Rsf11 can be considered as a promising candidate for use in the bioremediation of mixed PAH-heavy-metal contamination.
Collapse
Affiliation(s)
| | | | | | | | - Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia; (S.G.); (M.R.); (I.S.); (A.B.)
| |
Collapse
|
3
|
Li Q, Imran. Mitigation strategies for heavy metal toxicity and its negative effects on soil and plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1439-1452. [PMID: 38494751 DOI: 10.1080/15226514.2024.2327611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heavy metal pollution threatens food security by accumulating in crops and soils, posing a significant challenge to modern agriculture due to its high toxicity. Urgent action is needed to restore affected agricultural fields. An efficient way to remove toxins is by bioremediation, which uses microorganisms. With the purpose of restoring soil in agriculture, this research attempts to assemble a consortium of microorganisms isolated from techno-genic soil. A number of promising strains, including Pseudomonas putida, Pantoea sp., Pseudomonas aeruginosa, Klebsiella oxytoca, and Agrobacterium tumefaciens were chosen based on their capacity to eliminate heavy metals from tests. Heavy metal removal (Cd, Hg, As, Pb, and Ni) and phytohormone production have been shown to be effective using consortiums (Pseudomonas aeruginosa, Klebsiella oxytoca, and Agrobacterium tumefaciens in a 1:1:2). In instances with mixed heavy-metal contamination, aeruginosa demonstrated efficacy because of its notable ability to absorb substantial quantities of heavy metals. The capacity of the cooperation to improve phytoremediation was investigated, with an emphasis on soil cleanup in agricultural areas. When combined with Sorghum bicolor L., it was able to remove roughly 16% As, 14% Hg, 32% Ni, 26% Cd, and 33% Pb from the soil.
Collapse
Affiliation(s)
- Quanheng Li
- Research Center for Earth System Science, Yunnan University, Kunming, China
| | - Imran
- College of Engineering, Agriculture Aviation Innovation Lab, South China Agriculture University, Guangzhou, China
- Ministry of Agriculture, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| |
Collapse
|
4
|
Liu P, Zhang X, Lin L, Cao Y, Lin X, Ye L, Yan J, Gao H, Wen J, Mysore KS, Liu J. Nodulation Signaling Pathway 1 and 2 Modulate Vanadium Accumulation and Tolerance of Legumes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306389. [PMID: 38225717 DOI: 10.1002/advs.202306389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Vanadium (V) pollution potentially threatens human health. Here, it is found that nsp1 and nsp2, Rhizobium symbiosis defective mutants of Medicago truncatula, are sensitive to V. Concentrations of phosphorus (P), iron (Fe), and sulfur (S) with V are negatively correlated in the shoots of wild-type R108, but not in mutant nsp1 and nsp2 shoots. Mutations in the P transporter PHT1, PHO1, and VPT families, Fe transporter IRT1, and S transporter SULTR1/3/4 family confer varying degrees of V tolerance on plants. Among these gene families, MtPT1, MtZIP6, MtZIP9, and MtSULTR1; 1 in R108 roots are significantly inhibited by V stress, while MtPHO1; 2, MtVPT2, and MtVPT3 are significantly induced. Overexpression of Arabidopsis thaliana VPT1 or M. truncatula MtVPT3 increases plant V tolerance. However, the response of these genes to V is weakened in nsp1 or nsp2 and influenced by soil microorganisms. Mutations in NSPs reduce rhizobacterial diversity under V stress and simplify the V-responsive operational taxonomic unit modules in co-occurrence networks. Furthermore, R108 recruits more beneficial rhizobacteria related to V, P, Fe, and S than does nsp1 or nsp2. Thus, NSPs can modulate the accumulation and tolerance of legumes to V through P, Fe, and S transporters, ion homeostasis, and rhizobacterial community responses.
Collapse
Affiliation(s)
- Peng Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Xinfei Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Lin Lin
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Yanyan Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Xizhen Lin
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Liaoliao Ye
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Jun Yan
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jinlong Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712 100, P. R. China
| |
Collapse
|
5
|
Choudhary M, Datta SP, Golui D, Meena MC, Nogiya M, Samal SK, Raza MB, Rahman MM, Mishra R. Effect of sludge amelioration on yield, accumulation and translocation of heavy metals in soybean grown in acid and alkaline soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101343-101357. [PMID: 37651010 DOI: 10.1007/s11356-023-29568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
A greenhouse pot experiment was conducted with seven different levels of sludge (0, 5, 10, 20, 40, 80, 160 g kg-1) to assess the potential impact of sludge application on soybean (Glycine max (L.) Merr.) productivity, metal accumulation and translocation, and physico-chemical changes in acid and alkaline soils. The outcomes revealed that the application of sludge @ 5.0 to 160 g kg-1 resulted in a significant (p < 0.05) increase in seed and straw yield in both acid and alkaline soils compared to control. All the assessed heavy metals in soybean were within permissible ranges and did not exceed the phytotoxic limit, except for Fe, Zn, and Cu in the roots from the application of sewage sludge. The values of bioaccumulation factor (BFroot/soil) and translocation factor i.e., TFstraw/root and TFseed/straw were < 1.0 for Ni, Pb and Cr. Overall, for all the sludge application doses the soil pH was observed to increase in the acid soil and decline in alkaline soil when compared to the control. All the investigated heavy metals (Fe, Mn, Zn, Cu, Ni, Cd, Pb, and Cr) in the different plant tissues (root, straw and seed) of soybean were correlated with the soil variables. The study finds that sludge can be a potential organic fertilizer and function as an eco-friendly technique for the recycling of nutrients in the soil while keeping a check on the heavy metals' availability to plants.
Collapse
Affiliation(s)
- Mahipal Choudhary
- ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Siba Prasad Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- ICAR-Indian Institute of Soil Science, Bhopal, 462001, India.
| | - Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Department of Civil Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | - Mahesh Chand Meena
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Saubhagya Kumar Samal
- ICAR-Indian Institute of Soil & Water Conservation, RC Koraput, Panchkula, Odisha, 763002, India
| | - Mohammed Basit Raza
- ICAR-Directorate of Floricultural Research, Pune, Maharashtra, 411036, India
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rahul Mishra
- ICAR-Indian Institute of Soil Science, Bhopal, 462001, India
| |
Collapse
|
6
|
Atuchin VV, Asyakina LK, Serazetdinova YR, Frolova AS, Velichkovich NS, Prosekov AY. Microorganisms for Bioremediation of Soils Contaminated with Heavy Metals. Microorganisms 2023; 11:microorganisms11040864. [PMID: 37110287 PMCID: PMC10145494 DOI: 10.3390/microorganisms11040864] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Heavy-metal contaminants are one of the most relevant problems of contemporary agriculture. High toxicity and the ability to accumulate in soils and crops pose a serious threat to food security. To solve this problem, it is necessary to accelerate the pace of restoration of disturbed agricultural lands. Bioremediation is an effective treatment for agricultural soil pollution. It relies on the ability of microorganisms to remove pollutants. The purpose of this study is to create a consortium based on microorganisms isolated from technogenic sites for further development in the field of soil restoration in agriculture. In the study, promising strains that can remove heavy metals from experimental media were selected: Pantoea sp., Achromobacter denitrificans, Klebsiella oxytoca, Rhizobium radiobacter, and Pseudomonas fluorescens. On their basis, consortiums were compiled, which were investigated for the ability to remove heavy metals from nutrient media, as well as to produce phytohormones. The most effective was Consortium D, which included Achromobacter denitrificans, Klebsiella oxytoca, and Rhizobium radiobacter in a ratio of 1:1:2, respectively. The ability of this consortium to produce indole-3-acetic acid and indole-3-butyric acid was 18.03 μg/L and 2.02 μg/L, respectively; the absorption capacity for heavy metals from the experimental media was Cd (56.39 mg/L), Hg (58.03 mg/L), As (61.17 mg/L), Pb (91.13 mg/L), and Ni (98.22 mg/L). Consortium D has also been found to be effective in conditions of mixed heavy-metal contamination. Due to the fact that the further use of the consortium will be focused on the soil of agricultural land cleanup, its ability to intensify the process of phytoremediation has been studied. The combined use of Trifolium pratense L. and the developed consortium ensured the removal of about 32% Pb, 15% As, 13% Hg, 31% Ni, and 25% Cd from the soil. Further research will be aimed at developing a biological product to improve the efficiency of remediation of lands withdrawn from agricultural use.
Collapse
Affiliation(s)
- Victor V. Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Research and Development Department, Kemerovo State University, Kemerovo 650000, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk 630073, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, Tomsk 634034, Russia
- Correspondence:
| | - Lyudmila K. Asyakina
- Laboratory of Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Kemerovo 650056, Russia
| | - Yulia R. Serazetdinova
- Laboratory of Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Kemerovo 650056, Russia
| | - Anna S. Frolova
- Laboratory of Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Kemerovo 650056, Russia
| | | | | |
Collapse
|