1
|
Baguma JK, Mukasa SB, Nuwamanya E, Alicai T, Omongo C, Hyde PT, Setter TL, Ochwo-Ssemakula M, Esuma W, Kanaabi M, Iragaba P, Baguma Y, Kawuki RS. Flowering and fruit-set in cassava under extended red-light photoperiod supplemented with plant-growth regulators and pruning. BMC PLANT BIOLOGY 2023; 23:335. [PMID: 37353746 DOI: 10.1186/s12870-023-04349-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) is staple food and major source of calories for over 500 million people in sub-Saharan Africa. The crop is also a source of income for smallholder farmers, and has increasing potential for industrial utilization. However, breeding efforts to match the increasing demand of cassava are impeded by its inability to flower, delayed or unsynchronized flowering, low proportion of female flowers and high fruit abortions. To overcome these sexual reproductive bottlenecks, this study investigated the effectiveness of using red lights to extend the photoperiod (RLE), as a gateway to enhancing flowering and fruit set under field conditions. MATERIALS AND METHODS Panels of cassava genotypes, with non- or late and early flowering response, 10 in each case, were subjected to RLE from dusk to dawn. RLE was further evaluated at low (LL), medium (ML) and high (HL) red light intensities, at ~ ≤ 0.5; 1.0 and 1.5PFD (Photon Flux Density) in µmol m-2 s-1 respectively. Additionally, the effect of a cytokinin and anti-ethylene as plant growth regulators (PGR) and pruning under RLE treatment were examined. RESULTS RLE stimulated earlier flower initiation in all genotypes, by up to 2 months in the late-flowering genotypes. Height and number of nodes at first branching, particularly in the late-flowering genotypes were also reduced, by over 50%. Number and proportion of pistillate flowers more than doubled, while number of fruits and seeds also increased. Number of branching levels during the crop season also increased by about three. Earlier flowering in many genotypes was most elicited at LL to ML intensities. Additive effects on flower numbers were detected between RLE, PGR and pruning applications. PGR and pruning treatments further increased number and proportion of pistillate flowers and fruits. Plants subjected to PGR and pruning, developed bisexual flowers and exhibited feminization of staminate flowers. Pruning at first branching resulted in higher pistillate flower induction than at second branching. CONCLUSIONS These results indicate that RLE improves flowering in cassava, and its effectiveness is enhanced when PGR and pruning are applied. Thus, deployment of these technologies in breeding programs could significantly enhance cassava hybridizations and thus cassava breeding efficiency and impact.
Collapse
Affiliation(s)
- Julius K Baguma
- School of Agricultural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda.
| | - Settumba B Mukasa
- School of Agricultural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Ephraim Nuwamanya
- School of Agricultural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Titus Alicai
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Christopher Omongo
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Peter T Hyde
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Tim L Setter
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - William Esuma
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Michael Kanaabi
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Paula Iragaba
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Yona Baguma
- National Agricultural Research Organisation (NARO) Secretariat, P. O. Box 295, Entebbe, Uganda
| | - Robert S Kawuki
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| |
Collapse
|
2
|
Zhang D, Chen Q, Zhang X, Lin L, Cai M, Cai W, Liu Y, Xiang L, Sun M, Yu X, Li Y. Effects of low temperature on flowering and the expression of related genes in Loropetalum chinense var. rubrum. FRONTIERS IN PLANT SCIENCE 2022; 13:1000160. [PMID: 36457526 PMCID: PMC9705732 DOI: 10.3389/fpls.2022.1000160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Loropetalum chinense var. rubrum blooms 2-3 times a year, among which the autumn flowering period has great potential for exploitation, but the number of flowers in the autumn flowering period is much smaller than that in the spring flowering period. METHODS Using 'Hei Zhenzhu' and 'Xiangnong Xiangyun' as experimental materials, the winter growth environment of L. chinense var. rubrum in Changsha, Hunan Province was simulated by setting a low temperature of 6-10°C in an artificial climate chamber to investigate the effect of winter low temperature on the flowering traits and related gene expression of L. chinense var. rubrum. RESULTS The results showed that after 45 days of low temperature culture and a subsequent period of 25°C greenhouse culture, flower buds and flowers started to appear on days 24 and 33 of 25°C greenhouse culture for 'Hei Zhenzhu', and flower buds and flowers started to appear on days 21 and 33 of 25°C greenhouse culture for 'Xiangnong Xiangyun'. The absolute growth rate of buds showed a 'Up-Down' pattern during the 7-28 days of low temperature culture; the chlorophyll fluorescence decay rate (Rfd) of both materials showed a 'Down-Up-Down' pattern during this period. The non-photochemical quenching coefficient (NPQ) showed the same trend as Rfd, and the photochemical quenching coefficient (QP) fluctuated above and below 0.05. The expression of AP1 and FT similar genes of L. chinense var. rubrum gradually increased after the beginning of low temperature culture, reaching the highest expression on day 14 and day 28, respectively, and the expression of both in the experimental group was higher than that in the control group. The expressions of FLC, SVP and TFL1 similar genes all decreased gradually with low temperature culture, among which the expressions of FLC similar genes and TFL1 similar genes in the experimental group were extremely significantly lower than those in the control group; in the experimental group, the expressions of GA3 similar genes were all extremely significantly higher than those in the control group, and the expressions all increased with the increase of low temperature culture time. DISCUSSION We found that the high expression of gibberellin genes may play an important role in the process of low temperature promotion of L. chinense var. rubrum flowering, and in the future, it may be possible to regulate L. chinense var. rubrum flowering by simply spraying exogenous gibberellin instead of the promotion effect of low temperature.
Collapse
Affiliation(s)
- Damao Zhang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Qianru Chen
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Xia Zhang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Ling Lin
- School of Economics, Hunan Agricultural University, Changsha, China
| | - Ming Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Wenqi Cai
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Yang Liu
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Lili Xiang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaoying Yu
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Yanlin Li
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
- Kunpeng Institute of Modern Agriculture, Foshan, China
| |
Collapse
|