1
|
Yan Y, Wang Y, Wen Y, Huang Y, Zhang M, Huang J, Li X, Wang C, Xu D. Metabolome and transcriptome integration reveals insights into petals coloration mechanism of three species in Sect. Chrysantha chang. PeerJ 2024; 12:e17275. [PMID: 38650646 PMCID: PMC11034495 DOI: 10.7717/peerj.17275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
Background Sect. Chrysantha Chang, belonging to the Camellia genus, is one of the rare and precious ornamental plants distinguished by a distinctive array of yellow-toned petals. However, the variation mechanisms of petal color in Sect. Chrysantha Chang remains largely unclear. Methods We conducted an integrated analysis of metabolome and transcriptome to reveal petal coloration mechanism in three species, which have different yellow tones petals, including C. chuongtsoensis (CZ, golden yellow), C. achrysantha (ZD, light yellow), and C. parvipetala (XB, milk white). Results A total of 356 flavonoid metabolites were detected, and 295 differential metabolites were screened. The contents of 74 differential metabolites showed an upward trend and 19 metabolites showed a downward trend, among which 11 metabolites were annotated to the KEGG pathway database. We speculated that 10 metabolites were closely related to the deepening of the yellowness. Transcriptome analysis indicated that there were 2,948, 14,018 and 13,366 differentially expressed genes (DEGs) between CZ vs. ZD, CZ vs. XB and ZD vs. XB, respectively. Six key structural genes (CcCHI, CcFLS, CcDFR1, CcDFR2, CcDFR3, and CcCYP75B1) and five candidate transcription factors (MYB22, MYB28, MYB17, EREBP9, and EREBP13) were involved in the regulation of flavonoid metabolites. The findings indicate that flavonoid compounds influence the color intensity of yellow-toned petals in Sect. Chrysantha Chang. Our results provide a new perspective on the molecular mechanisms underlying flower color variation and present potential candidate genes for Camellia breeding.
Collapse
Affiliation(s)
- Yadan Yan
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Ye Wang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Yafeng Wen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Yu Huang
- Nanning University, Nanning, China
| | - Minhuan Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Jiadi Huang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Xinyu Li
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Chuncheng Wang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | | |
Collapse
|
2
|
Yin C, Tang D, Liu X, Li Z, Xiang Y, Gao K, Li H, Yuan L, Huang B, Li J. Transcriptome analysis reveals important regulatory genes and pathways for tuber color variation in Pinellia ternata (Thunb.) Breit. PROTOPLASMA 2023; 260:1313-1325. [PMID: 36918417 DOI: 10.1007/s00709-023-01845-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
During the growth of Pinellia ternata (Thunb.) Breit. (P. ternata), the violet-red skin was occasionally produced spontaneously under natural cultivation. However, the specific mechanism leading to the color change is still unclear. This study performed transcriptomes in violet-red and pale-yellow skin and their peeled tubers of P. ternata, and the total flavonoids and anthocyanin contents were also determined. The results showed that the majority of genes involved in anthocyanin production were considerably increased in the violet-red skin of P. ternata tuber compared to the pale-yellow skin. Especially, phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) showed a remarkable increase in gene expression levels. Notably, shikimate O-hydroxycinnamoyltransferase (HCT), naringenin 3-dioxygenase (F3H), flavanone 4-reductase (DFR), and anthocyanidin synthase (ANS) were explicitly expressed in violet-red skin of P. ternata tuber, while undetectable in pale-yellow skin. The upregulation of these genes may explain the accumulation of anthocyanins, which forms the violet-red skin of P. ternata tuber. The transcription factors, including C2H2, bZIP, ERF, GATA, bHLH, C3H, NAC, MYB-related, and MYB families, might trigger the skin color change in P. ternata. The entire anthocyanin content in the violet-red skin of P. ternata tuber was 71.10 μg/g, and pale-yellow skin was 7.74 μg/g. According to phenotypic and transcriptome results, the elevated expression levels of genes linked to the synthesis of anthocyanins considerably contributed to the violet-red skin alterations in P. ternata tuber. This study provides a new understanding of the formation of the violet-red skin, lays a theoretical foundation for the cultivation of unique varieties of P. ternata, and provides transcriptome data for further study of the differences between different colors of P. ternata.
Collapse
Affiliation(s)
- Cong Yin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16#, Hongshan District, Wuhan, Hubei, 430065, China
| | - Ding Tang
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16#, Hongshan District, Wuhan, Hubei, 430065, China
| | - Xiaoyu Liu
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16#, Hongshan District, Wuhan, Hubei, 430065, China
| | - Zihan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16#, Hongshan District, Wuhan, Hubei, 430065, China
| | - Yulin Xiang
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16#, Hongshan District, Wuhan, Hubei, 430065, China
| | - Kaiming Gao
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16#, Hongshan District, Wuhan, Hubei, 430065, China
| | - Heyu Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16#, Hongshan District, Wuhan, Hubei, 430065, China
- Tianjin Ubasio Technology Group Co., Ltd., Tianjin, 300457, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Bisheng Huang
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16#, Hongshan District, Wuhan, Hubei, 430065, China
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Huang-Jia-Hu West Road 16#, Hongshan District, Wuhan, Hubei, 430065, China.
| |
Collapse
|