1
|
Timmins-Schiffman EB, Khanna R, Brown T, Dilworth J, MacLean BX, Mudge MC, White SJ, Kenkel CD, Rodrigues LJ, Nunn BL, Padilla-Gamiño JL. Proteomic Plasticity in the Coral Montipora capitata Gamete Bundles after Parent Thermal Bleaching. J Proteome Res 2025; 24:1317-1328. [PMID: 39996506 DOI: 10.1021/acs.jproteome.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Coral reefs are vital to marine biodiversity and human livelihoods, but they face significant threats from climate change. Increased ocean temperatures drive massive "bleaching" events, during which corals lose their symbiotic algae and the important metabolic resources those algae provide. Proteomics is a crucial tool for understanding coral function and tolerance to thermal stress, as proteins drive physiological processes and accurately represent cell functional phenotypes. We examined the physiological condition of coral (Montipora capitata) gametes from parents that either experienced thermal bleaching or were nonbleached controls by comparing data dependent (DDA) and data independent (DIA) acquisition methods and peptide quantification (spectral counting and area-under-the-curve, AUC) strategies. For DDA, AUC captured a broader dynamic range than spectral counting. DIA yielded better coverage of low abundance proteins than DDA and a higher number of proteins, making it the more suitable method for detecting subtle, yet biologically significant, shifts in protein abundance in gamete bundles. Gametes from bleached corals showed a broadscale decrease in metabolic proteins involved in carbohydrate metabolism, citric acid cycle, and protein translation. This metabolic plasticity could reveal how organisms and their offspring acclimatize and adapt to future environmental stress, ultimately shaping the resilience and dynamics of coral populations.
Collapse
Affiliation(s)
- Emma B Timmins-Schiffman
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Rayhan Khanna
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Tanya Brown
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington 98195, United States
| | - Jenna Dilworth
- College of Letters, Arts and Sciences, University of Southern California Dornsife, AHF 231, 3616 Trousdale Pkwy, Los Angeles, California 90089, United States
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Miranda C Mudge
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Samuel J White
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington 98195, United States
| | - Carly D Kenkel
- College of Letters, Arts and Sciences, University of Southern California Dornsife, AHF 231, 3616 Trousdale Pkwy, Los Angeles, California 90089, United States
| | - Lisa J Rodrigues
- College of Liberal Arts and Sciences, Villanova University, 800 E. Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Jacqueline L Padilla-Gamiño
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Crehan O, Davy SK, Grover R, Ferrier-Pagès C. Nutrient depletion and heat stress impair the assimilation of nitrogen compounds in a scleractinian coral. J Exp Biol 2024; 227:jeb246466. [PMID: 38563292 DOI: 10.1242/jeb.246466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Concentrations of dissolved nitrogen in seawater can affect the resilience of the cnidarian-dinoflagellate symbiosis to climate change-induced bleaching. However, it is not yet known how the assimilation and translocation of the various nitrogen forms change during heat stress, nor how the symbiosis responds to nutrient depletion, which may occur due to increasing water stratification. Here, the tropical scleractinian coral Stylophora pistillata, in symbiosis with dinoflagellates of the genus Symbiodinium, was grown at different temperatures (26°C, 30°C and 34°C), before being placed in nutrient-replete or -depleted seawater for 24 h. The corals were then incubated with 13C-labelled sodium bicarbonate and different 15N-labelled nitrogen forms (ammonium, urea and dissolved free amino acids) to determine their assimilation rates. We found that nutrient depletion inhibited the assimilation of all nitrogen sources studied and that heat stress reduced the assimilation of ammonium and dissolved free amino acids. However, the host assimilated over 3-fold more urea at 30°C relative to 26°C. Overall, both moderate heat stress (30°C) and nutrient depletion individually decreased the total nitrogen assimilated by the symbiont by 66%, and combined, they decreased assimilation by 79%. This led to the symbiotic algae becoming nitrogen starved, with the C:N ratio increasing by over 3-fold at 34°C, potentially exacerbating the impacts of coral bleaching.
Collapse
Affiliation(s)
- Oscar Crehan
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Renaud Grover
- Marine Department, Centre Scientifique de Monaco, MC 98000 Monaco, Principality of Monaco
| | | |
Collapse
|
3
|
Price JT, McLachlan RH, Jury CP, Toonen RJ, Wilkins MJ, Grottoli AG. Long-term coral microbial community acclimatization is associated with coral survival in a changing climate. PLoS One 2023; 18:e0291503. [PMID: 37738222 PMCID: PMC10516427 DOI: 10.1371/journal.pone.0291503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/30/2023] [Indexed: 09/24/2023] Open
Abstract
The plasticity of some coral-associated microbial communities under stressors like warming and ocean acidification suggests the microbiome has a role in the acclimatization of corals to future ocean conditions. Here, we evaluated the acclimatization potential of coral-associated microbial communities of four Hawaiian coral species (Porites compressa, Porites lobata, Montipora capitata, and Pocillopora acuta) over 22-month mesocosm experiment. The corals were exposed to one of four treatments: control, ocean acidification, ocean warming, or combined future ocean conditions. Over the 22-month study, 33-67% of corals died or experienced a loss of most live tissue coverage in the ocean warming and future ocean treatments while only 0-10% died in the ocean acidification and control. Among the survivors, coral-associated microbial communities responded to the chronic future ocean treatment in one of two ways: (1) microbial communities differed between the control and future ocean treatment, suggesting the potential capacity for acclimatization, or (2) microbial communities did not significantly differ between the control and future ocean treatment. The first strategy was observed in both Porites species and was associated with higher survivorship compared to M. capitata and P. acuta which exhibited the second strategy. Interestingly, the microbial community responses to chronic stressors were independent of coral physiology. These findings indicate acclimatization of microbial communities may confer resilience in some species of corals to chronic warming associated with climate change. However, M. capitata genets that survived the future ocean treatment hosted significantly different microbial communities from those that died, suggesting the microbial communities of the survivors conferred some resilience. Thus, even among coral species with inflexible microbial communities, some individuals may already be tolerant to future ocean conditions. These findings suggest that coral-associated microbial communities could play an important role in the persistence of some corals and underlie climate change-driven shifts in coral community composition.
Collapse
Affiliation(s)
- James T. Price
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Rowan H. McLachlan
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Christopher P. Jury
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United States of America
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United States of America
| | - Michael J. Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Andréa G. Grottoli
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
4
|
Keighan R, van Woesik R, Yalon A, Nam J, Houk P. Moderate chlorophyll-a environments reduce coral bleaching during thermal stress in Yap, Micronesia. Sci Rep 2023; 13:9338. [PMID: 37291208 PMCID: PMC10250426 DOI: 10.1038/s41598-023-36355-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Thermal-stress events on coral reefs lead to coral bleaching, mortality, and changes in species composition. The coral reefs of Yap, in the Federated States of Micronesia, however, remained largely unaffected by major thermal-stress events until 2020, when temperatures were elevated for three months. Twenty-nine study sites were examined around Yap to determine geographical and taxonomic patterns of coral abundance, bleaching susceptibility, and environmental predictors of bleaching susceptibility. Island-wide, 21% (± 14%) of the coral cover was bleached in 2020. Although inner reefs had a greater proportion of thermally-tolerant Porites corals, the prevalence of bleaching was consistently lower on inner reefs (10%) than on outer reefs (31%) for all coral taxa. Corals on both inner and outer reefs along the southwestern coast exhibited the lowest prevalence of coral bleaching and had consistently elevated chlorophyll-a concentrations. More broadly, we revealed a negative relationship between bleaching prevalence and (moderate) chlorophyll-a concentrations that may have facilitated resistance to thermal stress by reducing irradiance and providing a heterotrophic energy source to benefit some corals exposed to autotrophic stress. Southwestern reefs also supported a high but declining fish biomass, making these bleaching-resistant and productive reefs a potential climate-change refuge and a prime target for conservation.
Collapse
Affiliation(s)
- Rachael Keighan
- University of Guam Marine Laboratory, UoG Station, Mangilao, GU, 96923, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, 150 West University Blvd, Melbourne, Fl, 32901, USA
| | - Anthony Yalon
- Yap State Division of Marine Resources, Colonia, Yap, FM 96943, Federated States of Micronesia
| | - Joe Nam
- Yap Community Action Program, Colonia, Yap, FM 96943, Federated States of Micronesia
| | - Peter Houk
- University of Guam Marine Laboratory, UoG Station, Mangilao, GU, 96923, USA.
| |
Collapse
|
5
|
Shantz AA, Ladd MC, Ezzat L, Schmitt RJ, Holbrook SJ, Schmeltzer E, Vega Thurber R, Burkepile DE. Positive interactions between corals and damselfish increase coral resistance to temperature stress. GLOBAL CHANGE BIOLOGY 2023; 29:417-431. [PMID: 36315059 DOI: 10.1111/gcb.16480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/12/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
By the century's end, many tropical seas will reach temperatures exceeding most coral species' thermal tolerance on an annual basis. The persistence of corals in these regions will, therefore, depend on their abilities to tolerate recurrent thermal stress. Although ecologists have long recognized that positive interspecific interactions can ameliorate environmental stress to expand the realized niche of plants and animals, coral bleaching studies have largely overlooked how interactions with community members outside of the coral holobiont shape the bleaching response. Here, we subjected a common coral, Pocillopora grandis, to 10 days of thermal stress in aquaria with and without the damselfish Dascyllus flavicaudus (yellowtail dascyllus), which commonly shelter within these corals, to examine how interactions with damselfish impacted coral thermal tolerance. Corals often benefit from nutrients excreted by animals they interact with and prior to thermal stress, corals grown with damselfish showed improved photophysiology (Fv /Fm ) and developed larger endosymbiont populations. When exposed to thermal stress, corals with fish performed as well as control corals maintained at ambient temperatures without fish. In contrast, corals exposed to thermal stress without fish experienced photophysiological impairment, a more than 50% decline in endosymbiont density, and a 36% decrease in tissue protein content. At the end of the experiment, thermal stress caused average calcification rates to decrease by over 80% when damselfish were absent but increase nearly 25% when damselfish were present. Our study indicates that damselfish-derived nutrients can increase coral thermal tolerance and are consistent with the Stress Gradient Hypothesis, which predicts that positive interactions become increasingly important for structuring communities as environmental stress increases. Because warming of just a few degrees can exceed corals' temperature tolerance to trigger bleaching and mortality, positive interactions could play a critical role in maintaining some coral species in warming regions until climate change is aggressively addressed.
Collapse
Affiliation(s)
- Andrew A Shantz
- Florida State University Coastal and Marine Laboratory, St. Teresa, Florida, USA
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Mark C Ladd
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- NOAA-National Marine Fisheries Service, Southeast Fisheries Science Center, Key Biscayne, Florida, USA
| | - Leila Ezzat
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Russell J Schmitt
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Sally J Holbrook
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Emily Schmeltzer
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Deron E Burkepile
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|