1
|
Xu X, Yang T, An J, Li B, Dou Z. Liver injury in sepsis: manifestations, mechanisms and emerging therapeutic strategies. Front Immunol 2025; 16:1575554. [PMID: 40226624 PMCID: PMC11985447 DOI: 10.3389/fimmu.2025.1575554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Sepsis is defined as a condition related to infection that manifests with multiorgan dysfunction, representing a life-threatening state. Consequently, severe complications frequently occur, with liver injury being one of the most prevalent serious complications of sepsis. Liver dysfunction during sepsis serves as an independent predictor of mortality. This review provides a comprehensive overview of current research on sepsis-induced liver injury (SILI), encompassing the clinical manifestations, diagnostic criteria, pathogenesis and therapeutic strategies associated with this condition. SILI may manifest as hypoxic hepatitis due to ischemia and shock, cholestasis resulting from abnormal bile metabolism, or bile duct sclerosis. The pathophysiology of sepsis involves intricate interactions among the inflammatory response, oxidative stress, and cell death. All of these factors complicate treatment and represent potential targets for therapeutic intervention. Furthermore, this review addresses the limitations inherent in conventional therapies currently employed for managing SILI and emphasizes the potential of novel targeted strategies aimed at addressing the fundamental mechanisms underlying this condition.
Collapse
Affiliation(s)
- Xinqi Xu
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Tingyu Yang
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jiapan An
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Bin Li
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhimin Dou
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Pei S, Liu J, Wang Z, Fan Y, Meng S, Huang X, Cui Y, Xie K. Genetic analysis of diagnostic and therapeutic potential for ferroptosis in postoperative sepsis. Int Immunopharmacol 2025; 147:114042. [PMID: 39793232 DOI: 10.1016/j.intimp.2025.114042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND Ferroptosis is a new form of iron-dependent cell death that is closely associated with sepsis. However, few studies have investigated the diagnostic and therapeutic potential for ferroptosis-related genes (FRGs) among postoperative sepsis. METHODS The GSE131761 dataset was used to identify differentially expressed FRGs (DE-FRGs). KEGG and GO analyses were subsequently performed. LASSO and SVM-RFE methods were applied for identifying genetic biomarkers for sepsis. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were applied for exploring the biological properties of the DEGs. CIBERSORT was applied to analyse immune cell infiltration. DGldb was employed for predicting potential target drugs for the DEGs. Competing endogenous RNA (ceRNA) networks were constructed to analyse the regulatory patterns of the DEGs. The expression of hub genes was validated based on GSE26440 dataset. The bioinformatics analysis was carried out with R software (version 4.1.2). Blood from sepsis patients and healthy controls was collected and the expression of hub genes was experimentally verified by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS 38 sepsis-associated DE-FRGs were assessed via Gene Expression Omnibus (GEO) and Ferroptosis database (FerrDb), and the gene function analysis showed that they were closely related to inflammatory response and autophagy regulation. Subsequently, SVM-RFE and LASSO methods determined 7 marker genes. GSEA suggested that these marker genes may be involved in regulating several biological pathways. Furthermore, 52 gene-targeted drugs were identified in this study, the vast majority of which were associated with MAPK14. CIBERSORT analysis suggested that SLC38A1, MGST1, and MAPK14 may be involved in immune microenvironment alterations. We revealed the potential complex regulatory relationship by constructing a ceRNA network based on marker genes. Finally, 6 genes were validated in the validation set, with 5 of them further confirmed through RT-qPCR. CONCLUSION Seven genes associated with ferroptosis are screened from postoperative sepsis samples. The expression of these genes has high diagnostic validity for sepsis and may serve as potential diagnostic biomarkers. This study gives an entrance point to uncover the underlying mechanisms of sepsis.
Collapse
Affiliation(s)
- Shuaijie Pei
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China; Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianfeng Liu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China; Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhiwei Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuqi Meng
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China; Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaofan Huang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Cui
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China; Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China; Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China; Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, China.
| |
Collapse
|
3
|
Ying-Hao P, Yu-Shan Y, Song-Yi C, Hua J, Peng Y, Xiao-Hu C. Time of day-dependent alterations of ferroptosis in LPS-induced myocardial injury via Bmal-1/AKT/ Nrf2 in rat and H9c2 cell. Heliyon 2024; 10:e37088. [PMID: 39296207 PMCID: PMC11407985 DOI: 10.1016/j.heliyon.2024.e37088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background One of the most prevalent causes of death in sepsis is sepsis-induced cardiomyopathy (SICM). Circadian disruption is involved in the progress of sepsis. However, the molecular mechanism remains unclear. Methods Here, we built LPS-induced SICM in-vivo and in-vitro models. LPS was administrated at the particular Zeitgeber times (ZT), ZT4-ZT10-ZT16-ZT22 and ZT10-ZT22 in vivo and vitro experiments, respectively. Results In vivo experiment, injection of LPS at ZT10 induced higher infiltration of inflammatory cells and content of intracellular Fe2+, and lower level of Glutathione peroxidase 4 (GPX4) and cardiac function than other ZTs (P < 0.05), which indicated that myocardial ferroptosis in septic rat presented a time of day-dependent manner. Bmal-1 protein and mRNA levels of injection of LPS at ZT10 were lower than those at other three ZTs (P < 0.05). The ratios of pAKT/AKT at ZT4 and ZT10 LPS injection were lower than those at ZT16 and ZT22 (P < 0.05). Nrf2 protein levels at ZT10 LPS injection were lower than those at other three ZTs (P < 0.05). These results indicated that the circadian of Bmal-1 and its downstream AKT/Nrf2 pathway in rat heart were inhibited under SICM condition. Consistent with in-vivo experiment, we found LPS could significantly reduce the expressions of Bmal-1 protein and mRNA in H9c2 cell. Up-regulation of Bmal-1 could reduce the cell death, oxidative stress, ferroptosis and activation of AKT/Nrf2 pathway at both ZT10 and ZT22 LPS administration. Conversely, its down-regulation presented opposite effects. AKT siRNA could weaken the effect of Bmal-1 pcDNA. Conclusion Ferroptosis presented the time of day-dependent manners via Bmal-1/AKT/Nrf2 in vivo and vitro models of SICM.
Collapse
Affiliation(s)
- Pei Ying-Hao
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| | - Yang Yu-Shan
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
- Department of Cardiology, the People's Hospital of Qingyang City, Gansu Province, China
| | - Cheng Song-Yi
- Department of Cardiology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing university of Chinese medicine, Jiangsu Province, Nanjing, China
| | - Jiang Hua
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| | - Yu Peng
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| | - Chen Xiao-Hu
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| |
Collapse
|
4
|
Letafati A, Taghiabadi Z, Ardekani OS, Abbasi S, Najafabadi AQ, Jazi NN, Soheili R, Rodrigo R, Yavarian J, Saso L. Unveiling the intersection: ferroptosis in influenza virus infection. Virol J 2024; 21:185. [PMID: 39135112 PMCID: PMC11321227 DOI: 10.1186/s12985-024-02462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
The influenza virus (IFV) imposes a considerable health and economic burden globally, requiring a comprehensive understanding of its pathogenic mechanisms. Ferroptosis, an iron-dependent lipid peroxidation cell death pathway, holds unique implications for the antioxidant defense system, with possible contributions to inflammation. This exploration focuses on the dynamic interplay between ferroptosis and the host defense against viruses, emphasizing the influence of IFV infections on the activation of the ferroptosis pathway. IFV causes different types of cell death, including apoptosis, necrosis, and ferroptosis. IFV-induced ferroptotic cell death is mediated by alterations in iron homeostasis, intensifying the accumulation of reactive oxygen species and promoting lipid peroxidation. A comprehensive investigation into the mechanism of ferroptosis in viral infections, specifically IFV, has great potential to identify therapeutic strategies. This understanding may pave the way for the development of drugs using ferroptosis inhibitors, presenting an effective approach to suppress viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Taghiabadi
- Department of Microbiology and Virology of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Omid Salahi Ardekani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Simin Abbasi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Qaraee Najafabadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Negar Nayerain Jazi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jila Yavarian
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy.
| |
Collapse
|
5
|
Xu L, Zhang L, Xiang Y, Zhang X. Knockdown of lncRNA NEAT1 suppresses streptococcus pneumoniae-induced ferroptosis in alveolar epithelial cells by regulating the Nrf2-GPX4 pathway. Toxicon 2024; 243:107705. [PMID: 38556062 DOI: 10.1016/j.toxicon.2024.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES Streptococcus pneumoniae (SP) is a major cause of community-acquired pneumonia. Ferroptosis pitches in pneumonia. Long noncoding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) regulates ferroptosis in various cells. Therefore, this study probed the mechanism of lncRNA NEAT1 on SP-induced ferroptosis in AECs. METHODS Serum lncRNA NEAT1 level in 36 streptococcus pneumonia patients were retrospectively detected, with its correlations with inflammatory factor (TNF-α/IL-1β/IL-6) levels analyzed. Human pulmonary alveolar epithelial cells (HPAEpiC) were transfected with sh-NEAT1 and induced by SP. Cell viability was evaluated by CCK-8. Lactate dehydrogenase (LDH) activity was assessed. Iron content, and levels of TNF-α/IL-1β/IL-6/IL-10/lncRNA NEAT1/lipid peroxidation products [malondialdehyde (MDA)/glutathione (GSH)/reactive oxygen species/(ROS)]/ferroptosis-related proteins [Cyclooxgenase 2 (COX2)/recombinant solute carrier family 7 member 11 (SLC7A11)/total nuclear factor erythroid 2-related factor 2 (Nrf2)/cytoplasmic Nrf2 (C-Nrf2)/nuclear Nrf2 (N-Nrf2)/GPX4)] were determined by kit/ELISA/RT-qPCR/kits/Western blot. Nrf2 nuclear translocation was detected by immunofluorescence assay. On top of lncRNA NEAT1 knockdown, SP-induced HPAEpiC were treated with ML385. RESULTS Serum lncRNA NEAT1 level was elevated in streptococcus pneumonia patients, and were positively interrelated with TNF-α/IL-1β/IL-6 levels. SP promoted cell HPAEpiC injury and inflammatory response, and up-regulated lncRNA NEAT1 level. LncRNA NEAT1 knockdown suppressed HPAEpiC injury/inflammatory response (reduced LDH activity and TNF-α/IL-1β/IL-6 levels, elevated IL-10) and suppressed ferroptosis (decreased iron/MDA/ROS contents and COX2 level, increased GSH/SLC7A11), facilitated Nrf2 nuclear translocation, and up-regulated GPX4. Nrf2-GPX4 pathway inhibition annulled NEAT1 knockdown-mediated improvement on SP-induced HPAEpiC ferroptosis/injury/inflammatory response. CONCLUSIONS LncRNA NEAT1 knockdown suppressed SP-induced HPAEpiC ferroptosis by activating Nrf2-GPX4 pathway, thereby alleviating cell injury and inflammatory response.
Collapse
Affiliation(s)
- Lin Xu
- Guizhou University Medical College, Guiyang City, 550025, Guizhou Province, China; Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang City, 550002, Guizhou Province, China
| | - Lu Zhang
- Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang City, 550002, Guizhou Province, China
| | - Yang Xiang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang City, 550002, Guizhou Province, China
| | - Xiangyan Zhang
- Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang City, 550002, Guizhou Province, China.
| |
Collapse
|
6
|
Liu R, Li F, Hao S, Hou D, Zeng X, Huang H, Sethi G, Guo J, Duan C. Low-dose Olaparib improves septic cardiac function by reducing ferroptosis via accelerated mitophagy flux. Pharmacol Res 2024; 200:107056. [PMID: 38228256 DOI: 10.1016/j.phrs.2023.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
Sepsis is a dysregulated response to infection that can result in life-threatening organ failure, and septic cardiomyopathy is a serious complication involving ferroptosis. Olaparib, a classic targeted drug used in oncology, has demonstrated potential protective effects against sepsis. However, the exact mechanisms underlying its action remain to be elucidated. In our study, we meticulously screened ferroptosis genes associated with sepsis, and conducted comprehensive functional enrichment analyses to delineate the relationship between ferroptosis and mitochondrial damage. Eight sepsis-characterized ferroptosis genes were identified in sepsis patients, including DPP4, LPIN1, PGD, HP, MAPK14, POR, GCLM, and SLC38A1, which were significantly correlated with mitochondrial quality imbalance. Utilizing DrugBank and molecular docking, we demonstrated a robust interaction of Olaparib with these genes. Lipopolysaccharide (LPS)-stimulated HL-1 cells and monocytes were used to establish an in vitro sepsis model. Additionally, an in vivo model was developed using mice subjected to cecal ligation and perforation (CLP). Intriguingly, low-dose Olaparib (5 mg/kg) effectively targeted and mitigated markers associated with ferroptosis, concurrently improving mitochondrial quality. This led to a marked enhancement in cardiac function and a significant increase in survival rates in septic mice (p < 0.05). The mechanism through which Olaparib ameliorates ferroptosis in cardiac and leukocyte cells post-sepsis is attributed to its facilitation of mitophagy, thus favoring mitochondrial integrity. In conclusion, our findings suggest that low-dose Olaparib can improve mitochondrial quality by accelerating mitophagy flux, consequently inhibiting ferroptosis and preserving cardiac function after sepsis.
Collapse
Affiliation(s)
- Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Fengjuan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510660, PR China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China; Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, PR China
| | - Dongyao Hou
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xue Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Gautam Sethi
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China; Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Jun Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510660, PR China.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| |
Collapse
|
7
|
Liu H, Tan S, Han S, Liu X, Li Z, Wang N, Wu Z, Ma J, Shi K, Wang W, Sha Z. Effects of miR-722 on gene expression and alternative splicing in the liver of half-smooth tongue sole after infection with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109275. [PMID: 38081443 DOI: 10.1016/j.fsi.2023.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/31/2023]
Abstract
MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.
Collapse
Affiliation(s)
- Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Sen Han
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xinbao Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhujun Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Ningning Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; College of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhendong Wu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jie Ma
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
8
|
Lin H, Ji F, Lin KQ, Zhu YT, Yang W, Zhang LH, Zhao JG, Pei YH. LPS-aggravated Ferroptosis via Disrupting Circadian Rhythm by Bmal1/AKT/p53 in Sepsis-Induced Myocardial Injury. Inflammation 2023:10.1007/s10753-023-01804-7. [PMID: 37046145 DOI: 10.1007/s10753-023-01804-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023]
Abstract
Circadian disruption is involved in the progress of sepsis-induced cardiomyopathy (SICM), one of the leading causes of death in sepsis. The molecular mechanism remains ambiguous. In this study, LPS was used to build SICM model in H9c2 cell. The results suggested that LPS induced cytotoxicity via increasing ferroptosis over the time of course. After screening the expressions of six circadian genes, the circadian swing of Bmal1 was dramatically restrained by LPS in H9c2 cell of SIMC vitro model. PcDNA and siRNA were used to upregulate and downregulate Bmal1 and confirmed that Bmal1 inhibited LPS-triggered ferroptosis in H9c2 cells. Then, the results suggested that AKT/p53 pathway was restrained by LPS in H9c2 cell. Rescue test indicated that Bmal1 inhibited LPS-triggered ferroptosis via AKT/p53 pathway in H9c2 cells. In summary, our findings demonstrated that LPS induced cytotoxicity via increasing ferroptosis over the time of course in H9c2 cells and Bmal1 inhibited this toxicity of LPS via AKT/p53 pathway. Although further studies are needed, our findings may contribute to a new insight to mechanism of SICM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Fang Ji
- Department of Intensive Care Unit, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Kong-Qin Lin
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Yu-Tao Zhu
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Wen Yang
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Long-Hai Zhang
- Department of Intensive Care Unit, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Jian-Gao Zhao
- Department of Neurology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China.
| | - Ying-Hao Pei
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
9
|
Identification and Validation of Potential Ferroptosis-Related Genes in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020297. [PMID: 36837498 PMCID: PMC9962586 DOI: 10.3390/medicina59020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Background and Objectives. Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a serve complication of long-term administration of glucocorticoids. Previous experimental studies have shown that ferroptosis might be involved in the pathological process of GIONFH. The purpose of this study is to identify the ferroptosis-related genes and pathways of GIONFH by bioinformatics to further illustrate the mechanism of ferroptosis in SONFH through bioinformatics analysis. Materials and Methods. The GSE123568 mRNA expression profile dataset, including 30 GIONFH samples and 10 non-GIONFH samples, was downloaded from the Gene Expression Omnibus (GEO) database. Ferroptosis-related genes were obtained from the FerrDb database. First, differentially expressed genes (DEGs) were identified between the serum samples from GIONFH cases and those from controls. Ferroptosis-related DEGs were obtained from the intersection of ferroptosis-related genes and DEGs. Only ferroptosis DEGs were used for all analyses. Then, we conducted a Kyoto encyclopedia of genome (KEGG) and gene ontology (GO) pathway enrichment analysis. We constructed a protein-protein interaction (PPI) network to screen out hub genes. Additionally, the expression levels of the hub genes were validated in an independent dataset GSE10311. Results. A total of 27 ferroptosis-related DEGs were obtained between the peripheral blood samples of GIONFH cases and non-GIONFH controls. Then, GO, and KEGG pathway enrichment analysis revealed that ferroptosis-related DEGs were mainly enriched in the regulation of the apoptotic process, oxidation-reduction process, and cell redox homeostasis, as well as HIF-1, TNF, FoxO signaling pathways, and osteoclast differentiation. Eight hub genes, including TLR4, PTGS2, SNCA, MAPK1, CYBB, SLC2A1, TXNIP, and MAP3K5, were identified by PPI network analysis. The expression levels of TLR4, TXNIP and MAP3K5 were further validated in the dataset GSE10311. Conclusion. A total of 27 ferroptosis-related DEGs involved in GIONFH were identified via bioinformatics analysis. TLR4, TXNIP, and MAP3K5 might serve as potential biomarkers and drug targets for GIONFH.
Collapse
|