1
|
Gu W, Liao F, Bai L, Zhang W, Jia S, Liang J, Zhou Y, Yin J, Fu X, Wu Y. Changing patterns and biological features of community-acquired Clostridioides difficile infection in Southwest China: 7 years of surveillance data. Microbiol Spectr 2025:e0201824. [PMID: 40304474 DOI: 10.1128/spectrum.02018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
The molecular epidemiological features of community-acquired Clostridioides difficile infection in Southwest China from 7 years of surveillance data were analyzed. Four representative C. difficile strains were selected for RNA-seq, biofilm formation, toxin expression, and cytotoxicity assays. Overall, 5.04% of the C. difficile strains were isolated within 7 years, 85.51% of which were toxigenic C. difficile (both tcdA+/tcdB+). Multilocus sequence typing (ST) and genomic sequencing divided all the isolates into two clusters, namely, clade 1 and clade 4, respectively. ST37 of C. difficile gradually replaced the ST3, ST35, and ST54 genotypes and became the dominant genotype in this area. The antibiotic resistance rate of strains in clade 4 was higher than that in clade 1, especially for the ST37 genotype strains, which were resistant to quinolones. Four C. difficile strains, R20291 (RT027), CD21062 (RT078), CD279 (ST54), and CD413 (ST37), were selected as representative isolates for subsequent biological investigations. RNA-seq revealed that the DEGs of C. difficile ST54 were enriched mainly in ABC transporters, two-component systems, and quorum sensing (QS) pathways and exhibited strong biofilm formation ability. The DEGs of the ST37 genotype strains were mainly enriched in the phosphotransferase system (PTS), ribosome, and some sugar and amino acid metabolism pathways, suggesting that these isolates have increased proliferation and metabolic status. On the other hand, C. difficile R20291 had the highest level of toxin transcription, expression, and cytotoxicity among these four strains. These genotype strains had their own biological characteristics, which provided certain clues for analyzing the causes of these changes.IMPORTANCEThis study carried out a molecular epidemiological investigation of community-acquired C. difficile infection in Southwest China and revealed the characteristics of genotype pattern changes in the strains. C. difficile ST37 gradually replaced the ST3, ST35, and ST54 genotypes to become the dominant strains in this area. Moreover, some representative strains were used to study their biological features. The ST54 strain had strong biofilm formation ability, and ABC transporters, two-component systems, and quorum sensing pathways were enriched according to RNA-seq. The ST37 genotype strain was enriched in the PTS, ribosome, and several sugar and amino acid metabolism pathways. The antibiotic resistance rate of Clade 4 C. difficile was higher than that of clade 1 strains, especially for the resistance of C. difficile ST37 to quinolones. The biological characteristics of these representative strains might provide certain clues for investigating the reasons for these changes.
Collapse
Affiliation(s)
- Wenpeng Gu
- Institute of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention (Yunnan Academy of Preventive Medicine), Kunming, China
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Kunming, China
| | - Feng Liao
- Department of Respiratory Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Lulu Bai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Wenzhu Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Senquan Jia
- Institute of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention (Yunnan Academy of Preventive Medicine), Kunming, China
| | - Junrong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongming Zhou
- Institute of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention (Yunnan Academy of Preventive Medicine), Kunming, China
| | - Jianwen Yin
- Institute of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention (Yunnan Academy of Preventive Medicine), Kunming, China
| | - Xiaoqing Fu
- Institute of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention (Yunnan Academy of Preventive Medicine), Kunming, China
| | - Yuan Wu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| |
Collapse
|
2
|
Ptaszyńska A, Macieja A, Rosińska-Lewandoska D, Bielec F, Machnicki P, Brauncajs M, Pastuszak-Lewandoska D. Molecular Epidemiology of Clostridioides difficile Infections in Patients Hospitalized in 2017-2019 at the Central Teaching Hospital of Medical University of Lodz, Central Poland. Antibiotics (Basel) 2025; 14:219. [PMID: 40149031 PMCID: PMC11939216 DOI: 10.3390/antibiotics14030219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives:Clostridioides difficile infection (CDI) represents a significant public health challenge globally, driven by its increasing prevalence, hypervirulent strains like ribotype 027 (RT027), and growing antibiotic resistance. This study aimed to evaluate the prevalence of RT027 and analyze molecular markers of vancomycin and metronidazole resistance in stool samples from CDI patients hospitalized in Poland between 2017 and 2019. Methods: A total of 200 stool samples from confirmed CDI cases were analyzed for the presence of RT027, vanA (vancomycin resistance), and nim (metronidazole resistance) genes. DNA was extracted, and a polymerase chain reaction (PCR) was conducted using specific primers. Statistical associations between RT027 and resistance genes were evaluated using chi-square tests and logistic regression. Results: RT027 was detected in 14% of samples. The vanA gene, indicative of vancomycin resistance, was found in 52.5% of samples, while the nim gene, associated with metronidazole resistance, was present in 1.5% of cases. Co-occurrence of RT027 with vanA was not statistically significant. The study revealed no significant association between RT027 and vanA. Also, no significant association was observed between RT027 and nim due to the latter's low prevalence. Conclusions: This study highlights a concerning prevalence of vanA among CDI cases, indicating widespread vancomycin resistance and challenging current treatment guidelines. While RT027 prevalence was moderate, no significant associations with vancomycin or metronidazole resistance were observed. These findings emphasize the need for molecular surveillance and improved antimicrobial stewardship to manage CDI effectively.
Collapse
Affiliation(s)
- Agata Ptaszyńska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| | - Anna Macieja
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Dominika Rosińska-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| | - Filip Bielec
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Piotr Machnicki
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| | - Małgorzata Brauncajs
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland (P.M.); (M.B.); (D.P.-L.)
| |
Collapse
|
3
|
Bai L, Xu T, Zhang W, Jiang Y, Gu W, Zhao W, Luan Y, Xiong Y, Zou N, Zhang Y, Luo M, Lu J, Zhang B, Wu Y. Abundant geographical divergence of Clostridioides difficile infection in China: a prospective multicenter cross-sectional study. BMC Infect Dis 2025; 25:185. [PMID: 39920584 PMCID: PMC11806848 DOI: 10.1186/s12879-025-10552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Clostridioides difficile is the predominant pathogen in hospital-acquired infections and antibiotic-associated diarrhea. Dedicated networks and annual reports for C. difficile surveillance have been established in Europe and North America, however the extensive investigation on the prevalence of C. difficile infection (CDI) in China is limited. In this study, 1528 patients with diarrhea were recruited from seven geographically representative regions of China between July 2021 and July 2022. The positivity rate of toxigenic C. difficile using real-time fluorescence quantitative PCR test of feces was 10.2% (156/1528), and 125 (8.2%, 125/1528) strains were successfully isolated. The isolates from different geographical areas had divergent characteristics after multilocus sequence typing, toxin gene profiling, and antimicrobial susceptibility testing. No isolate from clade 2 were found, and clade 1 was still the main clade for these clinical isolates. Interestingly, clade 4, especially ST37, previously known as the characteristic type of China, showed a strong geographical divergence. Clade 3, although rare in China, has been detected in Hainan and Sichuan provinces. Most C. difficile isolates (76.8%, 96/125) were toxigenic. Clindamycin, erythromycin, and moxifloxacin were the top three antibiotics to which resistance was observed, with resistance rates of 81.3%, 63.6%, and 24.0%, respectively. Furthermore, 34 (27.2%, 34/125) multidrug-resistant (MDR) strains were identified. All the strains were sensitive to metronidazole, vancomycin, and meropenem. The genotype of C. difficile varies greatly among the different geographical regions in China, and new types are constantly emerging. Therefore, comprehensive, longitudinal, and standardized surveillance of C. difficile infections is needed in China, covering typical geographical areas.
Collapse
Affiliation(s)
- Lulu Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Telong Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenzhu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yajun Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenpeng Gu
- Institute of Acute Infectious Disease Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming, Yunnan, 650500, China
| | - Wei Zhao
- Jilin Provincial Center for Disease Control and Prevention, Changchun, Jilin, 132001, China
| | - Yang Luan
- Xi'an Municipal Center for Disease Control and Prevention, Xi'an, Shaanxi, 710061, China
| | - Yanfeng Xiong
- Ganzhou Center for Disease Control and Prevention, Ganzhou, Jiangxi, 341001, China
| | - Nianli Zou
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, 643002, China
| | - Yalin Zhang
- Hainan Provincial Center for Disease Control and Prevention, Haikou, Hainan, 570203, China
| | - Ming Luo
- Yulin Center for Disease Control and Prevention, Yulin, Guangxi, 537006, China
| | - Jinxing Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Bike Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuan Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
4
|
Karthik K, Anbazhagan S, Priyadharshini MLM, Sharma RK, Manoharan S. Comparative genomics of zoonotic pathogen Clostridioides difficile of animal origin to understand its diversity. 3 Biotech 2024; 14:257. [PMID: 39372495 PMCID: PMC11452369 DOI: 10.1007/s13205-024-04102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Clostridioides difficile, a zoonotic pathogen causing enteric diseases in different animals and humans. A comprehensive study on the presence of toxin genes and antimicrobial resistance genes based on genome data of C. difficile in animals is scanty. In the present study, a total of 15 C. difficile isolates were recovered from dogs and isolates with toxin genes (D1, CD15 and CD26) along with two other non-toxigenic strains (CD28, CD32) were used for whole genome sequencing and comparative genomics. Sequence type-based clustering was noted in the whole genome phylogeny with 4 known multi-locus sequence typing (MLST) clades namely I, II, IV, and V and a cryptic clade. ST11 and ST54 were reported for the 2nd time worldwide in dogs. Out of 109 genomes used in the study, 29 genomes were predicted with all four toxin genes (toxA, toxB, cdtA, cdtB) while 22 did not have any of the toxin genes. ST11 of MLST clade V had the maximum number of 46 genomes predicted with at least one toxin gene. Among the genomes sequenced in this study, CD26 had a maximum of 5 AMR genes (aac(6')-aph(2″), ant(6)-Ia, catP, erm(B)_18, and tet(M)_11) and CD15 was predicted with 2 AMR genes (aac(6')-aph(2″), erm(B)_18). Tetracycline resistance genes were predicted most in the ST11 genome. Of the 22 non-toxigenic strains, 9 genomes (ST48 = 5, ST3 = 2, ST109 = 1, ST15 = 1) were predicted with a minimum of one AMR gene. Pangenome analysis indicated that the Bpan value is 0.12 showing that C. difficile has an open pangenome structure. This indicates that the organism can evolve by the addition of new genes. This study reports the circulation of clinically important ST11 and multidrug-resistant non-toxigenic strains among animals. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04102-7.
Collapse
Affiliation(s)
- Kumaragurubaran Karthik
- Veterinary College and Research Institute, Udumalpet, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600051 India
| | - Subbaiyan Anbazhagan
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, 500078 India
| | - Murugaiyan Latha Mala Priyadharshini
- Vaccine Research Centre-Bacterial Vaccines, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600051 India
| | - Rajeev Kumar Sharma
- Department of Veterinary Microbiology, College of Veterinary Science, AAU, Khanapara Campus, Guwahati, Assam India
| | - Seeralan Manoharan
- Vaccine Research Centre-Bacterial Vaccines, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600051 India
| |
Collapse
|
5
|
Tercero-Guerrero D, Blanco JL, Hernández M, Torre-Fuentes L, Alvarez J, García ME. Whole-genome sequencing of toxigenic Clostridioides difficile reveals multidrug resistance and virulence genes in strains of environmental and animal origin. BMC Vet Res 2024; 20:479. [PMID: 39434132 PMCID: PMC11492571 DOI: 10.1186/s12917-024-04332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines. RESULTS The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types. CONCLUSIONS The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected.
Collapse
Affiliation(s)
- Daniela Tercero-Guerrero
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain.
| | - Marta Hernández
- Area of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Laura Torre-Fuentes
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Julio Alvarez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28039, Madrid, Spain
| |
Collapse
|
6
|
Yang Y, Xie S, He F, Xu Y, Wang Z, Ihsan A, Wang X. Recent development and fighting strategies for lincosamide antibiotic resistance. Clin Microbiol Rev 2024; 37:e0016123. [PMID: 38634634 PMCID: PMC11237733 DOI: 10.1128/cmr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.
Collapse
Affiliation(s)
- Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangjing He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhifang Wang
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Islamabad, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Li X, Tang X, Chen M, Wang S, Tong C, Xu J, Xie G, Ma B, Zou Y, Wang Y, Wen X, Wu Y. Intramuscular therapeutic doses of enrofloxacin affect microbial community structure but not the relative abundance of fluoroquinolones resistance genes in swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169794. [PMID: 38181963 DOI: 10.1016/j.scitotenv.2023.169794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Livestock manure is a major source of veterinary antibiotics and antibiotic resistance genes (ARGs). Elucidation of the residual characteristics of ARGs in livestock manure following the administration of veterinary antibiotics is critical to assess their ecotoxicological effects and environmental contamination risks. Here, we investigated the effects of enrofloxacin (ENR), a fluoroquinolone antibiotic commonly used as a therapeutic drug in animal husbandry, on the characteristics of ARGs, mobile genetic elements, and microbial community structure in swine manure following its intramuscular administration for 3 days and a withdrawal period of 10 days. The results revealed the highest concentrations of ENR and ciprofloxacin (CIP) in swine manure at the end of the administration period, ENR concentrations in swine manure in groups L and H were 88.67 ± 45.46 and 219.75 ± 88.05 mg/kg DM, respectively. Approximately 15 fluoroquinolone resistance genes (FRGs) and 48 fluoroquinolone-related multidrug resistance genes (F-MRGs) were detected in swine manure; the relative abundance of the F-MRGs was considerably higher than that of the FRGs. On day 3, the relative abundance of qacA was significantly higher in group H than in group CK, and no significant differences in the relative abundance of other FRGs, F-MRGs, or MGEs were observed between the three groups on day 3 and day 13. The microbial community structure in swine manure was significantly altered on day 3, and the altered community structure was restored on day 13. The FRGs and F-MRGs with the highest relative abundance were qacA and adeF, respectively, and Clostridium and Lactobacillus were the dominant bacterial genera carrying these genes in swine manure. In summary, a single treatment of intramuscular ENR transiently increased antibiotic concentrations and altered the microbial community structure in swine manure; however, this treatment did not significantly affect the abundance of FRGs and F-MRGs.
Collapse
Affiliation(s)
- Xianghui Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyue Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Majan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyu Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chang Tong
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Gaomiao Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Cui Y, Zhang C, Jia Q, Gong X, Tan Y, Hua X, Jian W, Yang S, Hayer K, Raja Idris RK, Zhang Y, Wu Y, Tu Z. An epidemiological surveillance study (2021-2022): detection of a high diversity of Clostridioides difficile isolates in one tertiary hospital in Chongqing, Southwest China. BMC Infect Dis 2023; 23:703. [PMID: 37858038 PMCID: PMC10588108 DOI: 10.1186/s12879-023-08666-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Clostridioides difficile is a bacterium that causes antibiotic-associated infectious diarrhea and pseudomembranous enterocolitis. The impact of C. difficile infection (CDI) in China has gained significant attention in recent years. However, little epidemiological data are available from Chongqing, a city located in Southwest China. This study aimed to investigate the epidemiological pattern of CDI and explore the drug resistance of C. difficile isolates in Chongqing. METHODS A case-control study was conducted to investigate the clinical infection characteristics and susceptibility factors of C. difficile. The features of the C. difficile isolates were evaluated by testing for toxin genes and using multi-locus sequence typing (MLST). The susceptibility of strains to nine antibiotics was determined using agar dilution technique. RESULTS Out of 2084 diarrhea patients, 90 were tested positive for the isolation of toxigenic C. difficile strains, resulting in a CDI prevalence rate of 4.32%. Tetracycline, cephalosporins, hepatobiliary disease, and gastrointestinal disorders were identified as independent risk factors for CDI incidence. The 90 strains were classified into 21 sequence types (ST), with ST3 being the most frequent (n = 25, 27.78%), followed by ST2 (n = 10, 11.11%) and ST37 (n = 9, 10%). Three different toxin types were identified: 69 (76.67%) were A+B+CDT-, 12 (13.33%) were A-B+CDT-, and 9 (10%) were A+B+CDT+. Although substantial resistance to erythromycin (73.33%), moxifloxacin (62.22%), and clindamycin (82.22%), none of the isolates exhibited resistance to vancomycin, tigecycline, or metronidazole. Furthermore, different toxin types displayed varying anti-microbial characteristics. CONCLUSIONS The strains identified in Chongqing, Southwest China, exhibited high genetic diversity. Enhance full awareness of high-risk patients with HA-CDI infection, particularly those with gastrointestinal and hepatocellular diseases, and emphasize caution in the use of tetracycline and capecitabine. These findings suggest that a potential epidemic of CDI may occur in the future, emphasizing the need for timely monitoring.
Collapse
Affiliation(s)
- Yihong Cui
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, 400016, Chongqing, China
| | - Chuanming Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Qianying Jia
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Xue Gong
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, 400016, Chongqing, China
| | - Yu Tan
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, 400016, Chongqing, China
| | - Xinping Hua
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, 400016, Chongqing, China
| | - Wenwen Jian
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, 400016, Chongqing, China
| | - Shenglin Yang
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, 400016, Chongqing, China
| | - Kim Hayer
- Leicester Medical School, University of Leicester, LE1 7RH, Leicester, UK
| | | | - Yi Zhang
- International Medical College, Chongqing Medical University, 400016, Chongqing, China
| | - Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, National Insti for Communicable Disease Control and Prevention, Chinese Center for Disease Prevention and Control, 102206, Beijing, China
| | - Zeng Tu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|