1
|
Fang S, Wu S, Chen P. Targeting Caveolin-1 for enhanced rotator cuff repair: findings from single-cell RNA sequencing. Cell Death Discov 2025; 11:88. [PMID: 40044676 PMCID: PMC11882801 DOI: 10.1038/s41420-025-02359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
Rotator cuff injury (RCI), a prevalent cause of shoulder pain and disability, often leads to significant functional impairments due to adipocyte infiltration into the damaged tissue. Caveolin-1 (Cav-1), a critical membrane protein, plays a significant role in adipocyte differentiation and lipid metabolism. This study utilized single-cell RNA sequencing (scRNA-seq) to investigate the heterogeneity of cell subpopulations in RCI tissues and assess the regulatory effects of Cav-1. The findings revealed that Cav-1 expression negatively correlates with adipogenic activity, and its modulation through exercise or targeted therapies can significantly reduce adipocyte infiltration and enhance tissue repair. Further, Cav-1 knockout and overexpression models demonstrated the protein's impact on key genes involved in adipocyte differentiation and lipid metabolism, such as Scd1, fatty acid synthase (FASN), and peroxisome proliferator-activated receptor gamma (Pparg). Animal studies corroborated these results, showing that exercise intervention increased Cav-1 expression, decreased adipocyte infiltration, and promoted structural repair. These insights suggest that targeting Cav-1 could offer a novel therapeutic strategy for improving RCI outcomes.
Collapse
Affiliation(s)
- Shanhong Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, PR China
- Fujian Orthopaedics Research Institute, Fuzhou, PR China
- Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, PR China
| | - Songye Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, PR China
- Fujian Orthopaedics Research Institute, Fuzhou, PR China
- Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, PR China
| | - Peng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China.
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, PR China.
- Fujian Orthopaedics Research Institute, Fuzhou, PR China.
- Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, PR China.
| |
Collapse
|
2
|
Zhang CXW, Candia AA, Sferruzzi-Perri AN. Placental inflammation, oxidative stress, and fetal outcomes in maternal obesity. Trends Endocrinol Metab 2024; 35:638-647. [PMID: 38418281 DOI: 10.1016/j.tem.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
The obesity epidemic has led to a growing body of research investigating the consequences of maternal obesity on pregnancy and offspring health. The placenta, traditionally viewed as a passive intermediary between mother and fetus, is known to play a critical role in modulating the intrauterine environment and fetal development, and we now know that maternal obesity leads to increased inflammation, oxidative stress, and altered placental function. Here, we review recent research exploring the involvement of inflammation and oxidative stress as mechanisms impacting the placenta and fetus during obese pregnancy. Understanding them is crucial for informing strategies that can mitigate the adverse health effects of maternal obesity on offspring development and disease risk.
Collapse
Affiliation(s)
- Cindy X W Zhang
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alejandro A Candia
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Institute of Health Sciences, University of O'Higgins, Santiago, Chile
| | | |
Collapse
|