1
|
Robles-Rodríguez C, Muley VY, González-Dávalos ML, Shimada A, Varela-Echavarría A, Mora O. Microbial colonization dynamics of the postnatal digestive tract of Bos indicus calves. Anim Sci J 2023; 94:e13872. [PMID: 37666790 DOI: 10.1111/asj.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
The rumen and the jejunum of calves have distinct functional roles; the former is in the storage and fermentation of feed, and the latter is in transporting digesta to the ileum. It is unknown how nutrition changes the evolution of the microbiome of these organs after birth. We sequenced and characterized the entire microbiome of the rumen and the jejunum from Bos indicus calves of the Mexican Tropics to study their dynamics at Days 0, 7, 28, and 42 after birth. Operational taxonomic units (OTUs) belonging to 185 and 222 genera from 15 phylum were observed in the organs, respectively. The most abundant OTUs were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. We observed that proteobacterial species were outcompeted after the first week of life by Bacteroidetes and Firmicutes in the rumen and the jejunum, respectively. Moreover, Prevotella species were found to predominate in the rumen (36% of total OTUs), while the jejunum microbiome is composed of small proportions of several genera. Presumably, their high relative abundance assists in specialized functions and is more likely in fermentation since they are anaerobes. In summary, the rumen and the jejunum microbiomes were outcompeted by new microbiomes in a dynamic process that begins at birth.
Collapse
Affiliation(s)
- Carolina Robles-Rodríguez
- Posgrado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - María Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| |
Collapse
|
2
|
Castillo C, Hernández J. Ruminal Fistulation and Cannulation: A Necessary Procedure for the Advancement of Biotechnological Research in Ruminants. Animals (Basel) 2021; 11:ani11071870. [PMID: 34201623 PMCID: PMC8300264 DOI: 10.3390/ani11071870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary This article addresses the role of ruminal fistulation and cannulation as an essential procedure in the advancement of research related to several items: fermentation in the ruminant forestomach, effects of new food sources, rumen diseases as well as the minimization of methane emissions, implicated in the so-called greenhouse gases. The aim is also to diminish the alarmist news promoted by animalist sectors, which accuse this technique of being an act of cruelty. This paper describes the importance of this procedure as a necessary in vivo tool for biotechnological research. In addition, we highlight the necessary management measures to ensure animal welfare. This review ends with a description of current in vitro methods as an alternative to in vivo studies, assessing their applicability as a complementary tool to the knowledge of rumen dynamics. Abstract Rumen content is a complex mixture of feed, water, fermentation products, and living organisms such as bacteria, fungi, and protozoa, which vary over time and with different feeds. As it is impossible to reproduce this complex system in the laboratory, surgical fistulation and cannulation of the rumen is a powerful tool for the study (in vivo and in situ) of the physiology and biochemistry of the ruminant digestive system. Rumen fistulation in cattle, sheep, and goats has been performed extensively to advance our understanding of digestive physiology and development, nutrient degradability, and rumen microbial populations. The literature reports several fistulation and cannulation procedures in ruminants, which is not the focus of this paper. However, this method questions the ethical principles that alter the opinions of certain animal groups or those opposed to animal experimentation. In this article, we analyze the objectives of fistulation and cannulation of ruminants and the care needed to ensure that the welfare of the animal is maintained at all times. Due to the ethical issues raised by this technique, several in vitro digestion methods for simulating ruminal fermentation have been developed. The most relevant ones are described in this article. Independently of the procedure, we want to point out that research carried out with animals is obliged by legislation to follow strict ethical protocols, following the well-being and health status of the animal at all times.
Collapse
|
3
|
Li X. Plant cell wall chemistry: implications for ruminant utilisation. JOURNAL OF APPLIED ANIMAL NUTRITION 2021. [DOI: 10.3920/jaan2020.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruminants have adapted to cope with bulky, fibrous forage diets by accommodating a large, diverse microbial population in the reticulo-rumen. Ruminants are dependent on forages as their main sources of energy and other nutrients. Forages are comprised of a complex matrix of cellulose, hemicellulose, protein, minerals and phenolic compounds (including lignin and tannins) with various linkages; many of which are poorly defined. The composition and characteristics of polysaccharides vary greatly among forages and plant cell walls. Plant cell walls are linked and packed together in tight configurations to resist degradation, and hence their nutritional value to animals varies considerably, depending on composition, structure and degradability. An understanding of the inter-relationship between the chemical composition and the degradation of plant cell walls by rumen microorganisms is of major economic importance to ruminant production. Increasing the efficiency of fibre degradation in the rumen has been the subject of extensive research for many decades. This review summarises current knowledge of forage chemistry in order to develop strategies to increase efficiency of forage utilisation by ruminants.
Collapse
Affiliation(s)
- X. Li
- The University of Queensland, School of Agriculture and Food Sciences, Gatton, Qld 4343, Australia
| |
Collapse
|
4
|
Zeineldin M, Barakat R, Elolimy A, Salem AZM, Elghandour MMY, Monroy JC. Synergetic action between the rumen microbiota and bovine health. Microb Pathog 2018; 124:106-115. [PMID: 30138752 DOI: 10.1016/j.micpath.2018.08.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 12/26/2022]
Abstract
Host-rumen-microbe interactions are essential components of many physiological processes, and therefore can affect ruminant health. Classical knowledge of rumen microbiology is based on culture-dependent methodologies, which only account for 10-20% of the rumen bacterial communities. While, the advancement in DNA sequencing and bioinformatics platforms provide novel approaches to investigate the composition and dynamics of the rumen microbiota. Recent studies demonstrated that the ruminal ecosystem is highly diverse and harbors numerous microbial communities. The composition of these microbial communities are affected by various environmental factors such as nutrition and different management strategies. Disturbance in the microbial ecology of the rumen is associated with the development of various diseases. Despite the flow of recent rumen-based studies, rumen microbiota is still not fully characterized. This review provides an overview of recent efforts to characterize rumen microbiota and its potential role in rumen health and disease. Moreover, the recent effects of dietary interventions and probiotics on rumen microbiota are discussed.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Egypt; Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, USA
| | - Ahmed Elolimy
- Department of Animal Sciences, Mammalian NutriPhysioGenomics, University of Illinois, Urbana, IL 61801, USA
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autonoma del Estado de Mexico, Toluca, Mexico.
| | - Mona M Y Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - José Cedillo Monroy
- Centro Universitario UAEM-Temascaltepec, Universidad Autónoma del Estado de México, Mexico
| |
Collapse
|
5
|
Zhang H, Tang H, Zang Y, Tang X, Wang Y. Microorganism's adaptation of Crucian carp may closely relate to its living environments. Microbiologyopen 2018; 8:e00650. [PMID: 29877059 PMCID: PMC6436428 DOI: 10.1002/mbo3.650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/07/2018] [Accepted: 04/07/2018] [Indexed: 11/16/2022] Open
Abstract
The relationship between the internal microbiome of an individual organism and that of its external environment has been little investigated in freshwater ecosystems. Thus, this is an area of interest in freshwater fish biology. Along with the genotype of the fish host, external environment plays an important role in determining the composition of the internal microbiome. Here, we characterized the variability of the microbiome of wild Crucian carp (Carassius auratus), along with those of their surrounding environments (water and mud). We found that each environment had distinct bacterial communities, with varying composition and structure. The primary bacterial phyla identified in the Crucian carp gut were Fusobacteria and Proteobacteria (90% of all bacterial phyla identified); the primary genera identified were Cetobacterium, Aeromonas, and Plesiomonas (85% of all bacterial phyla identified). We identified 1,739 operational taxonomic units (OTUs) in the Crucian carp gut, 1,703 in water, and 5,322 in mud. Each environment had unique OTUs, but the fewest unique OTUs (97) were found in the Crucian carp gut. There were significant differences in the relative abundances of different bacterial phyla in the different environments. It may be that only bacterial phyla vital for efficient fish function (e.g., immune response or metabolism), such as Fusobacteria and Proteobacteria, are retained in the Crucian carp gut.
Collapse
Affiliation(s)
- Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hongshuo Tang
- College of Information Science and Engineering, Ocean University of China, Qingdao, China
| | - Yu Zang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Pitta DW, Indugu N, Baker L, Vecchiarelli B, Attwood G. Symposium review: Understanding diet-microbe interactions to enhance productivity of dairy cows. J Dairy Sci 2018; 101:7661-7679. [PMID: 29859694 DOI: 10.3168/jds.2017-13858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/30/2018] [Indexed: 11/19/2022]
Abstract
Ruminants are dependent on the microbiota (bacteria, protozoa, archaea, and fungi) that inhabit the reticulo-rumen for digestion of feedstuffs. Nearly 70% of energy and 50% of protein requirements for dairy cows are met by microbial fermentation in the rumen, emphasizing the need to characterize the role of microbes in feed breakdown and nutrient utilization. Over the past 2 decades, next-generation sequencing technologies have allowed for rapid expansion of knowledge concerning microbial populations and alterations in response to forages, concentrates, supplements, and probiotics in the rumen. Advances in gene sequencing and emerging bioinformatic tools have allowed for increased throughput of data to aid in our understanding of the functional relevance of microbial genomes. In particular, metagenomics can identify specific genes involved in metabolic pathways, and metatranscriptomics can describe the transcriptional activity of microbial genes. These powerful approaches help untangle the complex interactions between microbes and dietary nutrients so that we can more fully understand the physiology of feed digestion in the rumen. Application of genomics-based approaches offers promise in unraveling microbial niches and respective gene repertoires to potentiate fiber and nonfiber carbohydrate digestion, microbial protein synthesis, and healthy biohydrogenation. New information on microbial genomics and interactions with dietary components will more clearly define pathways in the rumen to positively influence milk yield and components.
Collapse
Affiliation(s)
- Dipti W Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348.
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - Linda Baker
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - Graeme Attwood
- Rumen Microbial Genomics, Ag Research, Palmerston North, New Zealand 11222
| |
Collapse
|
7
|
Shibulal B, Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ. Analysis of Bacterial Diversity in Different Heavy Oil Wells of a Reservoir in South Oman with Alkaline pH. SCIENTIFICA 2018; 2018:9230143. [PMID: 29755805 PMCID: PMC5884125 DOI: 10.1155/2018/9230143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
The identification of potential hydrocarbon utilizing bacteria is an essential requirement in microbial enhanced oil recovery (MEOR). Molecular approaches like proteomic and genomic characterization of the isolates are replacing the traditional method of identification with systemic classification. Genotypic profiling of the isolates includes fingerprint or pattern-based technique and sequence-based technique. Understanding community structure and dynamics is essential for studying diversity profiles and is challenging in the case of microbial analysis. The present study aims to understand the bacterial community composition from different heavy oil contaminated soil samples collected from geographically related oil well areas in Oman and to identify spore-forming hydrocarbon utilizing cultivable bacteria. V4 region of 16S rDNA gene was the target for Ion PGM™. A total of 825081 raw sequences were obtained from Ion torrent from all the 10 soil samples. The species richness and evenness were found to be moderate in all the samples with four main phyla, Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria, the most abundant being Firmicutes. Bacillus sp. ubiquitously dominated in all samples followed by Paenibacillus, which was followed by Brevibacillus, Planococcus, and Flavobacterium. Principal Coordinate Analysis (PCoA) and UPGMA dendrogram clustered the 10 soil samples into four main groups. Weighted UniFrac significance test determined that there was significant difference in the communities present in soil samples examined. It can be concluded that the microbial community was different in all the 10 soil samples with Bacillus and Paenibacillus sp. as predominating genus. The 16S rDNA sequencing of cultivable spore-forming bacteria identified the hydrocarbon utilizing bacteria as Bacillus and Paenibacillus sp. and the nucleotide sequences were submitted to NCBI GenBank under accession numbers KP119097-KP119115. Bacillus and Paenibacillus sp., which were relatively abundant in the oil fields, can be recommended to be chosen as candidates for hydrocarbon utilization study.
Collapse
Affiliation(s)
- Biji Shibulal
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Saif N. Al-Bahry
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Yahya M. Al-Wahaibi
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | | | - Ali S. Al-Bemani
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Sanket J. Joshi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
- Central Analytical and Applied Research Unit, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
8
|
Pitta D, Indugu N, Vecchiarelli B, Rico D, Harvatine K. Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows. J Dairy Sci 2018; 101:295-309. [DOI: 10.3168/jds.2016-12514] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 08/29/2017] [Indexed: 11/19/2022]
|
9
|
Allali I, Arnold JW, Roach J, Cadenas MB, Butz N, Hassan HM, Koci M, Ballou A, Mendoza M, Ali R, Azcarate-Peril MA. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiol 2017; 17:194. [PMID: 28903732 PMCID: PMC5598039 DOI: 10.1186/s12866-017-1101-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 08/29/2017] [Indexed: 12/16/2022] Open
Abstract
Background Advancements in Next Generation Sequencing (NGS) technologies regarding throughput, read length and accuracy had a major impact on microbiome research by significantly improving 16S rRNA amplicon sequencing. As rapid improvements in sequencing platforms and new data analysis pipelines are introduced, it is essential to evaluate their capabilities in specific applications. The aim of this study was to assess whether the same project-specific biological conclusions regarding microbiome composition could be reached using different sequencing platforms and bioinformatics pipelines. Results Chicken cecum microbiome was analyzed by 16S rRNA amplicon sequencing using Illumina MiSeq, Ion Torrent PGM, and Roche 454 GS FLX Titanium platforms, with standard and modified protocols for library preparation. We labeled the bioinformatics pipelines included in our analysis QIIME1 and QIIME2 (de novo OTU picking [not to be confused with QIIME version 2 commonly referred to as QIIME2]), QIIME3 and QIIME4 (open reference OTU picking), UPARSE1 and UPARSE2 (each pair differs only in the use of chimera depletion methods), and DADA2 (for Illumina data only). GS FLX+ yielded the longest reads and highest quality scores, while MiSeq generated the largest number of reads after quality filtering. Declines in quality scores were observed starting at bases 150–199 for GS FLX+ and bases 90–99 for MiSeq. Scores were stable for PGM-generated data. Overall microbiome compositional profiles were comparable between platforms; however, average relative abundance of specific taxa varied depending on sequencing platform, library preparation method, and bioinformatics analysis. Specifically, QIIME with de novo OTU picking yielded the highest number of unique species and alpha diversity was reduced with UPARSE and DADA2 compared to QIIME. Conclusions The three platforms compared in this study were capable of discriminating samples by treatment, despite differences in diversity and abundance, leading to similar biological conclusions. Our results demonstrate that while there were differences in depth of coverage and phylogenetic diversity, all workflows revealed comparable treatment effects on microbial diversity. To increase reproducibility and reliability and to retain consistency between similar studies, it is important to consider the impact on data quality and relative abundance of taxa when selecting NGS platforms and analysis tools for microbiome studies. Electronic supplementary material The online version of this article (10.1186/s12866-017-1101-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Imane Allali
- Department of Medicine, Division of Gastroenterology and Hepatology, and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Campus Box 7555, 332 Isaac Taylor Hall, Chapel Hill, NC, 27599-7545, USA.,Laboratory of Biochemistry & Immunology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Jason W Arnold
- Department of Medicine, Division of Gastroenterology and Hepatology, and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Campus Box 7555, 332 Isaac Taylor Hall, Chapel Hill, NC, 27599-7545, USA
| | - Jeffrey Roach
- Research Computing, University of North Carolina, Chapel Hill, NC, USA
| | - Maria Belen Cadenas
- Department of Medicine, Division of Gastroenterology and Hepatology, and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Campus Box 7555, 332 Isaac Taylor Hall, Chapel Hill, NC, 27599-7545, USA
| | - Natasha Butz
- Department of Medicine, Division of Gastroenterology and Hepatology, and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Campus Box 7555, 332 Isaac Taylor Hall, Chapel Hill, NC, 27599-7545, USA
| | - Hosni M Hassan
- Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Matthew Koci
- Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Anne Ballou
- Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Mary Mendoza
- Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Rizwana Ali
- Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Campus Box 7555, 332 Isaac Taylor Hall, Chapel Hill, NC, 27599-7545, USA.
| |
Collapse
|
10
|
Wu X, Zhang H, Chen J, Shang S, Yan J, Chen Y, Tang X, Zhang H. Analysis and comparison of the wolf microbiome under different environmental factors using three different data of Next Generation Sequencing. Sci Rep 2017; 7:11332. [PMID: 28900198 PMCID: PMC5596057 DOI: 10.1038/s41598-017-11770-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023] Open
Abstract
Next Generation Sequencing has been widely used to characterize the prevalence of fecal bacteria in many different species. In this study, we attempted to employ a low-cost and high-throughput sequencing model to discern information pertaining to the wolf microbiota. It is hoped that this model will allow researchers to elucidate potential protective factors in relation to endangered wolf species. We propose three high-throughput sequencing models to reveal information pertaining to the micro-ecology of the wolf. Our analyses advised that, among the three models, more than 100,000 sequences are more appropriate to retrieve the communities' richness and diversity of micro-ecology. In addition, the top five wolf microbiome OTUs (99%) were members of the following five phyla: Bacteroidetes, Fusobacteria, Firmicutes, Proteobacteria, and Actinobacteria. While Alloprevotella, Clostridium_sensu_stricto_1, Anaerobiospirillum, Faecalibactreium and Streptococcus were shared by all samples, their relative abundances were differentially represented between domestic dogs and other wolves. Our findings suggest that altitude, human interference, age, and climate all contribute towards the micro-ecology of the wolf. Specifically, we observed that genera Succinivibrio and Turicibacter are significantly related to altitude and human interference (including hunting practices).
Collapse
Affiliation(s)
- Xiaoyang Wu
- College of Life Science, Qufu Normal University, Qufu, Shandong, P.R. China
| | - Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, P.R. China
| | - Jun Chen
- College of Life Science, Qufu Normal University, Qufu, Shandong, P.R. China
| | - Shuai Shang
- College of Marine Life Sciences, Ocean University of China, Qingdao, P.R. China
| | - Jiakuo Yan
- College of Life Science, Qufu Normal University, Qufu, Shandong, P.R. China
| | - Yao Chen
- College of Life Science, Qufu Normal University, Qufu, Shandong, P.R. China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, P.R. China.
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, Shandong, P.R. China.
| |
Collapse
|
11
|
Cuscó A, Sánchez A, Altet L, Ferrer L, Francino O. Individual Signatures Define Canine Skin Microbiota Composition and Variability. Front Vet Sci 2017; 4:6. [PMID: 28220148 PMCID: PMC5292769 DOI: 10.3389/fvets.2017.00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/17/2017] [Indexed: 01/04/2023] Open
Abstract
Dogs present almost all their skin sites covered by hair, but canine skin disorders are more common in certain skin sites and breeds. The goal of our study is to characterize the composition and variability of the skin microbiota in healthy dogs and to evaluate the effect of the breed, the skin site, and the individual. We have analyzed eight skin sites of nine healthy dogs from three different breeds by massive sequencing of 16S rRNA gene V1–V2 hypervariable regions. The main phyla inhabiting the skin microbiota in healthy dogs are Proteobacteria, Firmicutes, Fusobacteria, Actinobacteria, and Bacteroidetes. Our results suggest that skin microbiota composition pattern is individual specific, with some dogs presenting an even representation of the main phyla and other dogs with only a major phylum. The individual is the main force driving skin microbiota composition and diversity rather than the skin site or the breed. The individual is explaining 45% of the distances among samples, whereas skin site explains 19% and breed 9%. Moreover, analysis of similarities suggests a strong dissimilarity among individuals (R = 0.79, P = 0.001) that is mainly explained by low-abundant species in each dog. Skin site also plays a role: inner pinna presents the highest diversity value, whereas perianal region presents the lowest one and the most differentiated microbiota composition.
Collapse
Affiliation(s)
- Anna Cuscó
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain; Vetgenomics, Ed Eureka, Parc de Recerca UAB, Barcelona, Spain
| | - Armand Sánchez
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Laura Altet
- Vetgenomics, Ed Eureka, Parc de Recerca UAB , Barcelona , Spain
| | - Lluís Ferrer
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University , North Grafton, MA , USA
| | - Olga Francino
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona , Barcelona , Spain
| |
Collapse
|
12
|
Derakhshani H, Tun HM, Cardoso FC, Plaizier JC, Khafipour E, Loor JJ. Linking Peripartal Dynamics of Ruminal Microbiota to Dietary Changes and Production Parameters. Front Microbiol 2017; 7:2143. [PMID: 28127294 PMCID: PMC5226935 DOI: 10.3389/fmicb.2016.02143] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
During the peripartal period, proper acclimatization of rumen microorganisms to variations in nutritional management can facilitate the transition into lactation. This study characterized the temporal shifts in the composition and functional properties of ruminal microbiota during the periparturient period in dairy cows subjected to a typical two-tiered feeding management approach. Ruminal digesta samples from eight multiparous fistulated Holstein cows were collected on days -14, -7, 10, 20, and 28 relative to parturition. High-throughput Illumina sequencing of the V4 region of the bacterial 16S rRNA gene revealed distinct clustering patterns between pre- and postpartal ruminal microbiota. During the prepartal period, when the voluntary dry matter intake was lower, we observed strikingly lower inter-animal variations in the composition of the ruminal microbiota. Genera Ruminococcus and Butyrivibrio, which are considered major fibrolytic rumen dwellers, were overrepresented in the prepartal rumen ecosystem. In contrast, increased postpartal voluntary DMI was associated with enrichment of bacterial genera mainly consisting of proteolytic, amylolytic, and lactate-producer species (including Prevotella, Streptococcus, and Lactobacillus). These, together with the postpartal enrichment of energy metabolism pathways, suggested a degree of acclimatization of the ruminal microbiota to harvest energy from the carbohydrate-dense lactation diet. In addition, correlations between ruminal microbiota and parameters such as milk yield and milk composition underscored the metabolic contribution of this microbial community to the cow's performance and production.
Collapse
Affiliation(s)
- Hooman Derakhshani
- Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Hein M Tun
- Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Felipe C Cardoso
- Department of Animal Sciences, University of Illinois Urbana, IL, USA
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of ManitobaWinnipeg, MB, Canada; Department of Medical Microbiology, University of ManitobaWinnipeg, MB, Canada
| | - Juan J Loor
- Department of Animal Sciences, University of IllinoisUrbana, IL, USA; Division of Nutritional Sciences and Illinois Informatics Institute, University of IllinoisUrbana, IL, USA
| |
Collapse
|
13
|
Genomic analyses of multidrug resistant Pseudomonas aeruginosa PA1 resequenced by single-molecule real-time sequencing. Biosci Rep 2016; 36:BSR20160282. [PMID: 27765811 PMCID: PMC5293553 DOI: 10.1042/bsr20160282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022] Open
Abstract
As a third-generation sequencing (TGS) method, single-molecule real-time (SMRT) technology provides long read length, and it is well suited for resequencing projects and de novo assembly. In the present study, Pseudomonas aeruginosa PA1 was characterized and resequenced using SMRT technology. PA1 was also subjected to genomic, comparative and pan-genomic analyses. The multidrug resistant strain PA1 possesses a 6,498,072 bp genome and a sequence type of ST-782. The genome of PA1 was also visualized, and the results revealed the details of general genome annotations, virulence factors, regulatory proteins (RPs), secretion system proteins, type II toxin–antitoxin (T–A) pairs and genomic islands. Whole genome comparison analysis suggested that PA1 exhibits similarity to other P. aeruginosa strains but differs in terms of horizontal gene transfer (HGT) regions, such as prophages and genomic islands. Phylogenetic analyses based on 16S rRNA sequences demonstrated that PA1 is closely related to PAO1, and P. aeruginosa strains can be divided into two main groups. The pan-genome of P. aeruginosa consists of a core genome of approximately 4,000 genes and an accessory genome of at least 6,600 genes. The present study presented a detailed, visualized and comparative analysis of the PA1 genome, to enhance our understanding of this notorious pathogen.
Collapse
|
14
|
Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows. Anaerobe 2015; 38:50-60. [PMID: 26700882 DOI: 10.1016/j.anaerobe.2015.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 02/02/2023]
Abstract
The microbial ecology of the rumen microbiome is influenced by the diet and the physiological status of the dairy cow and can have tremendous influence on the yield and components of milk. There are significant differences in milk yields between first and subsequent lactations of dairy cows, but information on how the rumen microbiome changes as the dairy cow gets older has received little attention. We characterized the rumen microbiome of the dairy cow for phylogeny and functional pathways by lactation group and stage of lactation using a metagenomics approach. Our findings revealed that the rumen microbiome was dominated by Bacteroidetes (70%), Firmicutes (15-20%) and Proteobacteria (7%). The abundance of Firmicutes and Proteobacteria were independently influenced by diet and lactation. Bacteroidetes contributed to a majority of the metabolic functions in first lactation dairy cows while the contribution from Firmicutes and Proteobacteria increased incrementally in second and third lactation dairy cows. We found that nearly 70% of the CAZymes were oligosaccharide breaking enzymes which reflect the higher starch and fermentable sugars in the diet. The results of this study suggest that the rumen microbiome continues to evolve as the dairy cow advances in lactations and these changes may have a significant role in milk production.
Collapse
|