1
|
Kelly CL, Wydrzynska M, Phelan MM, Osharovich S, Delikatny EJ, Sée V, Poptani H. Hypoxia Dependent Inhibition of Glioblastoma Cell Proliferation, Invasion, and Metabolism by the Choline-Kinase Inhibitor JAS239. Metabolites 2025; 15:76. [PMID: 39997701 PMCID: PMC11857610 DOI: 10.3390/metabo15020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Elevated choline kinase alpha (ChoK) levels are observed in most solid tumors, including glioblastomas (GBM), and ChoK inhibitors have demonstrated limited efficacy in GBM models. Given that hypoxia is associated with resistance to GBM therapy, we hypothesized that tumor hypoxia could be responsible for the limited response. Therefore, we evaluated the effects of hypoxia on the function of JAS239, a potent ChoK inhibitor in four GBM cell lines. Methods: Rodent (F98 and 9L) and human (U-87 MG and U-251 MG) GBM cell lines were subjected to 72 h of hypoxic conditioning and treated with JAS239 for 24 h. NMR metabolomic measurements and analyses were performed to evaluate the signaling pathways involved. In addition, cell proliferation, cell cycle progression, and cell invasion parameters were measured in 2D cell monolayers as well as in 3D cell spheroids, with or without JAS239 treatment, in normoxic or hypoxic cells to assess the effect of hypoxia on JAS239 function. Results: Hypoxia and JAS239 treatment led to significant changes in the cellular metabolic pathways, specifically the phospholipid and glycolytic pathways, associated with a reduction in cell proliferation via induced cell cycle arrest. Interestingly, JAS239 also impaired GBM invasion. However, effects from JAS239 were variable depending on the cell line, reflecting the inherent heterogeneity of GBMs. Conclusions: Our findings indicate that JAS239 and hypoxia can deregulate cellular metabolism, inhibit cell proliferation, and alter cell invasion. These results may be useful for designing new therapeutic strategies based on ChoK inhibition, which can act on multiple pro-tumorigenic features.
Collapse
Affiliation(s)
- Claire Louise Kelly
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK;
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool L69 7BE, UK;
| | - Martyna Wydrzynska
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool L69 7BE, UK;
| | - Marie M. Phelan
- High Field NMR Facility, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool L69 7ZX, UK;
| | - Sofya Osharovich
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (E.J.D.)
| | - Edward J. Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (E.J.D.)
| | - Violaine Sée
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool L69 7BE, UK;
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
2
|
Louise Kelly C, Wydrzynska M, Phelan MM, Osharovich S, Delikatny EJ, Sée V, Poptani H. Inhibition of glioblastoma cell proliferation and invasion by the choline-kinase inhibitor JAS239 varies with cell type and hypoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576078. [PMID: 38293093 PMCID: PMC10827177 DOI: 10.1101/2024.01.17.576078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Elevated choline kinase alpha (ChoK) is observed in most solid tumours including glioblastomas (GBM), yet until recently, inhibitors of ChoK have demonstrated limited efficacy in GBM models. Given that hypoxia is associated with GBM therapy resistance, we hypothesised that tumour hypoxia could be responsible for such limitations. We therefore evaluated in GBM cells, the effect of hypoxia on the function of JAS239, a potent ChoK inhibitor. Methods Rodent (F98 and 9L) and human (U-87 MG and U-251 MG) GBM cell lines were subjected to 72 hours of hypoxia conditioning and treated with JAS239 for 24 hours. NMR metabolomic measurements and analyses were performed to evaluate the signalling pathways involved. In addition, cell proliferation, cell cycle progression and cell invasion were measured in cell monolayers and 3D spheroids, with or without JAS239 treatment in normoxic or hypoxic cells to assess how hypoxia affects JAS239 function. Results Hypoxia and JAS239 treatment led to significant changes in the cellular metabolic pathways, specifically the phospholipid and glycolytic pathways associated with a reduction in cell proliferation via induced cell cycle arrest. Interestingly, JAS239 also impaired GBM invasion. However, JAS239 effects were variable depending on the cell line, reflecting the inherent heterogeneity observed in GBMs. Conclusion Our findings indicate that JAS239 and hypoxia can deregulate cellular metabolism, inhibit proliferation and alter cell invasion. These results may be useful for the design of new therapeutic strategies based on ChoK inhibition that can act on multiple pro-tumorigenic features.
Collapse
Affiliation(s)
- Claire Louise Kelly
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool, UK
| | - Martyna Wydrzynska
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool, UK
| | - Marie M Phelan
- High field NMR facility, Department of Biochemistry & Systems Biology, University of Liverpool, UK
| | - Sofya Osharovich
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Edward J. Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Violaine Sée
- Centre for Cell Imaging, Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Khaksar S, Kiarostami K, Alinaghi S. The Effects of Methanol Extracts of Hyssopus officinalis on Model of Induced Glioblastoma Multiforme (GBM) in Rats. J Mol Neurosci 2022; 72:2045-2066. [PMID: 35963984 DOI: 10.1007/s12031-022-02058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022]
Abstract
Given the complexity of pathophysiological processes of brain tumors, ineffective therapies, and high mortality rate, new therapeutic options with less toxicity are necessary. Hyssopus officinalis (hyssop) is an aromatic plant with important biological activities. The aim of this study is to assess the anti-cancer effect of hyssop extract on damages of glioblastoma multiforme. In this study, total flavonoids, phenolic content, and quantification of phenolic compound of hyssop extracts were analyzed. In vitro antioxidant properties of hyssop extract were also examined. In addition, cell viability, apoptosis, and cell cycle were evaluated in C6 glioma cell culture. In vivo, the rats were divided randomly into four main groups: intact, control, vehicle, and treatment groups. 1 × 106 C6 rat glioma cells were implanted into the right caudate nucleus of the rat's brain. The treatment group received the methanol extract of hyssop (100 mg/kg) for 7 days. Evolution of locomotor activity, tumor volume, survival rate, activities of antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)), vascular endothelial growth factor (VEGF) expression, TUNEL-positive cells, p53 and p21 mRNA expression, and histological alterations were performed. The results showed that the methanol extract of hyssop increased the apoptosis and reduced the cell division of C6 glioma cells in cell culture. Moreover, methanol extract decreased the tumor volume and prolonged survival. Also, the activity of SOD and CAT enzymes was reduced in tumor tissue and enhanced in surrounding tissue. TUNEL-positive cells were increased in methanol extract of hyssop group. The expression of p53 and p21 mRNA was upregulated in the treatment group. Moreover, the histological analysis indicated a considerable decrease in invasion of tumor cells and inflammation in the hyssop-treated rats. According to the achieved results, it can be stated that hyssop has sufficient potential to inhibit damage of brain tumors, at least in part, by affecting the oxidative stress and cell proliferation pathways.
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Khadijeh Kiarostami
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Shahrzad Alinaghi
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
4
|
Cowman S, Pizer B, Sée V. Downregulation of both mismatch repair and non-homologous end-joining pathways in hypoxic brain tumour cell lines. PeerJ 2021; 9:e11275. [PMID: 33986995 PMCID: PMC8092103 DOI: 10.7717/peerj.11275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/24/2021] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma, a grade IV astrocytoma, has a poor survival rate in part due to ineffective treatment options available. These tumours are heterogeneous with areas of low oxygen levels, termed hypoxic regions. Many intra-cellular signalling pathways, including DNA repair, can be altered by hypoxia. Since DNA damage induction and subsequent activation of DNA repair mechanisms is the cornerstone of glioblastoma treatment, alterations to DNA repair mechanisms could have a direct influence on treatment success. Our aim was to elucidate the impact of chronic hypoxia on DNA repair gene expression in a range of glioblastoma cell lines. We adopted a NanoString transcriptomic approach to examine the expression of 180 DNA repair-related genes in four classical glioblastoma cell lines (U87-MG, U251-MG, D566-MG, T98G) exposed to 5 days of normoxia (21% O2), moderate (1% O2) or severe (0.1% O2) hypoxia. We observed altered gene expression in several DNA repair pathways including homologous recombination repair, non-homologous end-joining and mismatch repair, with hypoxia primarily resulting in downregulation of gene expression. The extent of gene expression changes was dependent on hypoxic severity. Some, but not all, of these downregulations were directly under the control of HIF activity. For example, the downregulation of LIG4, a key component of non-homologous end-joining, was reversed upon inhibition of the hypoxia-inducible factor (HIF). In contrast, the downregulation of the mismatch repair gene, PMS2, was not affected by HIF inhibition. This suggests that numerous molecular mechanisms lead to hypoxia-induced reprogramming of the transcriptional landscape of DNA repair. Whilst the global impact of hypoxia on DNA repair gene expression is likely to lead to genomic instability, tumorigenesis and reduced sensitivity to anti-cancer treatment, treatment re-sensitising might require additional approaches to a simple HIF inhibition.
Collapse
Affiliation(s)
- Sophie Cowman
- Institute of Systems, Molecular and Integrative Biology, Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, Merseyside, United Kingdom.,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt-Lake-City, Utah, United States
| | - Barry Pizer
- Paediatric Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, Merseyside, United Kingdom
| | - Violaine Sée
- Institute of Systems, Molecular and Integrative Biology, Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, Merseyside, United Kingdom
| |
Collapse
|
5
|
Hettie KS, Klockow JL, Moon EJ, Giaccia AJ, Chin FT. A NIR fluorescent smart probe for imaging tumor hypoxia. Cancer Rep (Hoboken) 2021; 4:e1384. [PMID: 33811473 PMCID: PMC8551997 DOI: 10.1002/cnr2.1384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Tumor hypoxia is a characteristic of paramount importance due to low oxygenation levels in tissue negatively correlating with resistance to traditional therapies. The ability to noninvasively identify such could provide for personalized treatment(s) and enhance survival rates. Accordingly, we recently developed an NIR fluorescent hypoxia-sensitive smart probe (NO2 -Rosol) for identifying hypoxia via selectively imaging nitroreductase (NTR) activity, which could correlate to oxygen deprivation levels in cells, thereby serving as a proxy. We demonstrated proof of concept by subjecting a glioblastoma (GBM) cell line to extreme stress by evaluating such under radiobiological hypoxic (pO2 ≤ ~0.5%) conditions, which is a far cry from representative levels for hypoxia for brain glioma (pO2 = ~1.7%) which fluctuate little from physiological hypoxic (pO2 = 1.0-3.0%) conditions. AIM We aimed to evaluate the robustness, suitability, and feasibility of NO2 -Rosol for imaging hypoxia in vitro and in vivo via assessing NTR activity in diverse GBM models under relevant oxygenation levels (pO2 = 2.0%) within physiological hypoxic conditions that mimic oxygenation levels in GBM tumor tissue in the brain. METHODS We evaluated multiple GBM cell lines to determine their relative sensitivity to oxygenation levels via measuring carbonic anhydrase IX (CAIX) levels, which is a surrogate marker for indirectly identifying hypoxia by reporting on oxygen deprivation levels and upregulated NTR activity. We evaluated for hypoxia via measuring NTR activity when employing NO2 -Rosol in in vitro and tumor hypoxia imaging studies in vivo. RESULTS The GBM39 cell line demonstrated the highest CAIX expression under hypoxic conditions representing that of GBM in the brain. NO2 -Rosol displayed an 8-fold fluorescence enhancement when evaluated in GBM39 cells (pO2 = 2.0%), thereby establishing its robustness and suitability for imaging hypoxia under relevant physiological conditions. We demonstrated the feasibility of NO2 -Rosol to afford tumor hypoxia imaging in vivo via it demonstrating a tumor-to-background of 5 upon (i) diffusion throughout, (ii) bioreductive activation by NTR activity in, and (iii) retention within, GBM39 tumor tissue. CONCLUSION We established the robustness, suitability, and feasibility of NO2 -Rosol for imaging hypoxia under relevant oxygenation levels in vitro and in vivo via assessing NTR activity in GBM39 models.
Collapse
Affiliation(s)
- Kenneth S Hettie
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA.,Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, California, USA
| | - Jessica L Klockow
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Eui Jung Moon
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Chaicharoenaudomrung N, Kunhorm P, Promjantuek W, Rujanapun N, Heebkaew N, Soraksa N, Noisa P. Transcriptomic Profiling of 3D Glioblastoma Tumoroids for the Identification of Mechanisms Involved in Anticancer Drug Resistance. In Vivo 2020; 34:199-211. [PMID: 31882480 DOI: 10.21873/invivo.11762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM Among various types of brain tumors, glioblastoma is the most malignant and highly aggressive brain tumor that possesses a high resistance against anticancer drugs. To understand the underlined mechanisms of tumor drug resistance, a new and more effective research approach is required. The three dimensional (3D) in vitro cell culture models could be a potential approach to study cancer features and biology, as well as screen for anti-cancer agents due to the close mimicry of the 3D tumor microenvironments. MATERIALS AND METHODS With our developed 3D alginate scaffolds, Ilumina RNA-sequencing was used to transcriptomically analyze and compare the gene expression profiles between glioblastoma cells in traditional 2-dimensional (2D) monolayer and in 3D Ca-alginate scaffolds at day 14. To verify the reliability and accuracy of Illumina RNA-Sequencing data, ATP-binding cassette transporter genes were chosen for quantitative real-time polymerase chain reaction) verification. RESULTS The results showed that 7,411 and 3,915 genes of the 3D glioblastoma were up-regulated and down-regulated, respectively, compared with the 2D-cultured glioblastoma. Furthermore, the Kyoto Encyclopaedia of Genes and Genomes pathway analysis revealed that genes related to the cell cycle and DNA replication were enriched in the group of down-regulated gene. On the other hand, the genes involved in mitogen-activated protein kinase signaling, autophagy, drug metabolism through cytochrome P450, and ATP-binding cassette transporter were found in the up-regulated gene collection. CONCLUSION 3D glioblastoma tumoroids might potentially serve as a powerful platform for exploring glioblastoma biology. They can also be valuable in anti-glioblastoma drug screening, as well as the identification of novel molecular targets in clinical treatment of human glioblastoma.
Collapse
Affiliation(s)
- Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Narawadee Rujanapun
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nudjanad Heebkaew
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Natchadaporn Soraksa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
7
|
Musah-Eroje A, Watson S. Adaptive Changes of Glioblastoma Cells Following Exposure to Hypoxic (1% Oxygen) Tumour Microenvironment. Int J Mol Sci 2019; 20:ijms20092091. [PMID: 31035344 PMCID: PMC6539006 DOI: 10.3390/ijms20092091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme is the most aggressive and malignant primary brain tumour, with a median survival rate of between 15 to 17 months. Heterogeneous regions occur in glioblastoma as a result of oxygen gradients which ranges from 0.1% to 10% in vivo. Emerging evidence suggests that tumour hypoxia leads to increased aggressiveness and chemo/radio resistance. Yet, few in vitro studies have been performed in hypoxia. Using three glioblastoma cell-lines (U87, U251, and SNB19), the adaptation of glioblastoma cells in a 1% (hypoxia) and 20% (normoxia) oxygen microenvironment on proliferation, metabolism, migration, neurosphere formation, CD133 and VEGF expression was investigated. Compared to cells maintained in normoxia (20% oxygen), glioblastoma cells adapted to 1% oxygen tension by reducing proliferation and enhancing metabolism. Both migratory tendency and neurosphere formation ability were greatly limited. In addition, hypoxic-mediated gene upregulation (CD133 and VEGF) was reversed when cells were removed from the hypoxic environment. Collectively, our results reveal that hypoxia plays a pivotal role in changing the behaviour of glioblastoma cells. We have also shown that genetic modulation can be reversed, supporting the concept of reversibility. Thus, understanding the degree of oxygen gradient in glioblastoma will be crucial in personalising treatment for glioblastoma patients.
Collapse
Affiliation(s)
- Ahmed Musah-Eroje
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham NG7 2UH, UK.
- School of Life Sciences, University of Bedfordshire, Luton LU1 3JU, UK.
| | - Sue Watson
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
8
|
Cowman S, Fan YN, Pizer B, Sée V. Decrease of Nibrin expression in chronic hypoxia is associated with hypoxia-induced chemoresistance in some brain tumour cells. BMC Cancer 2019; 19:300. [PMID: 30943920 PMCID: PMC6446413 DOI: 10.1186/s12885-019-5476-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/14/2019] [Indexed: 12/03/2022] Open
Abstract
Background Solid tumours are less oxygenated than normal tissues. This is called tumour hypoxia and leads to resistance to radiotherapy and chemotherapy. The molecular mechanisms underlying such resistance have been investigated in a range of tumour types, including the adult brain tumours glioblastoma, yet little is known for paediatric brain tumours. Medulloblastoma (MB) is the most common malignant brain tumour in children. We aimed to elucidate the impact of hypoxia on the sensitivity of MB cells to chemo- and radiotherapy. Methods We used two MB cell line (D283-MED and MEB-Med8A) and a widely used glioblastoma cell line (U87MG) for comparison. We applied a range of molecular and cellular techniques to measure cell survival, cell cycle progression, protein expression and DNA damage combined with a transcriptomic micro-array approach in D283-MED cells, for global gene expression analysis in acute and chronic hypoxic conditions. Results In D283-MED and U87MG, chronic hypoxia (5 days), but not acute hypoxia (24 h) induced resistance to chemotherapy and X-ray irradiation. This acquired resistance upon chronic hypoxia was present but less pronounced in MEB-Med8A cells. Using transcriptomic analysis in D283-MED cells, we found a large transcriptional remodelling upon long term hypoxia, in particular the expression of a number of genes involved in detection and repair of double strand breaks (DSB) was altered. The levels of Nibrin (NBN) and MRE11, members of the MRN complex (MRE11/Rad50/NBN) responsible for DSB recognition, were significantly down-regulated. This was associated with a reduction of Ataxia Telangiectasia Mutated (ATM) activation by etoposide, indicating a profound dampening of the DNA damage signalling in hypoxic conditions. As a consequence, p53 activation by etoposide was reduced, and cell survival enhanced. Whilst U87MG shared the same dampened p53 activity, upon chemotherapeutic drug treatment in chronic hypoxic conditions, these cells used a different mechanism, independent of the DNA damage pathway. Conclusion Together our results demonstrate a new mechanism explaining hypoxia-induced resistance involving the alteration of the response to DSB in D283-MED cells, but also highlight the cell type to cell type diversity and the necessity to take into account the differing tumour genetic make-up when considering re-sensitisation therapeutic protocols. Electronic supplementary material The online version of this article (10.1186/s12885-019-5476-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Cowman
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK
| | - Yuen Ngan Fan
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK.,University of Manchester, Faculty of Biology, Medicine and Health, M13 9PT, Manchester, UK
| | - Barry Pizer
- University of Liverpool and Alder Hey Children's NHS Foundation Trust, member of Liverpool Health Partners., Liverpool, UK
| | - Violaine Sée
- University of Liverpool, Institute of Integrated Biology, Department of Biochemistry, Centre for Cell Imaging, L69 7ZB, Liverpool, UK.
| |
Collapse
|
9
|
Musah-Eroje A, Watson S. A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. J Neurooncol 2019; 142:231-240. [PMID: 30694423 PMCID: PMC6449313 DOI: 10.1007/s11060-019-03107-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Abstract
Purpose Glioblastoma (GBM) is the most common invasive malignant brain tumour in adults. It is traditionally investigated in vitro by culturing cells as a monolayer (2D culture) or as neurospheres (clusters enriched in cancer stem cells) but neither system accurately reflects the complexity of the three-dimensional (3D) chemoresistant microenvironment of GBM. Materials and methods Using three GBM cell-lines (U87, U251, and SNB19), the effect of culturing cells in a Cultrex-based basement membrane extract (BME) [3D Tumour Growth Assay (TGA)] on morphology, gene expression, metabolism, and temozolomide chemoresistance was investigated. Results Cells were easily harvested from the 3D model and cultured as a monolayer (2D) and neurospheres. Indeed, the SNB19 cells formed neurospheres only after they were first cultured in the 3D model. The expression of CD133 and OCT4 was upregulated in the neurosphere and 3D assays respectively. Compared with cells cultured in the 2D model, cells were more resistant to temozolomide in the 3D model and this resistance was potentiated by hypoxia. Conclusion Taken together, these results suggest that micro-environmental factors influence GBM sensitivity to temozolomide. Knowledge of the mechanisms involved in temozolomide resistance in this 3D model might lead to the identification of new strategies that enable the more effective use of the current standard of care agents. Electronic supplementary material The online version of this article (10.1007/s11060-019-03107-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahmed Musah-Eroje
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK. .,School of Life Sciences, University of Bedfordshire, Luton, UK.
| | - Sue Watson
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Valencia-Cervantes J, Huerta-Yepez S, Aquino-Jarquín G, Rodríguez-Enríquez S, Martínez-Fong D, Arias-Montaño JA, Dávila-Borja VM. Hypoxia increases chemoresistance in human medulloblastoma DAOY cells via hypoxia‑inducible factor 1α‑mediated downregulation of the CYP2B6, CYP3A4 and CYP3A5 enzymes and inhibition of cell proliferation. Oncol Rep 2018; 41:178-190. [PMID: 30320358 PMCID: PMC6278548 DOI: 10.3892/or.2018.6790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Medulloblastomas are among the most frequently diagnosed pediatric solid tumors, and drug resistance remains as the principal cause of treatment failure. Hypoxia and the subsequent activation of hypoxia-inducible factor 1α (HIF-1α) are considered key factors in modulating drug antitumor effectiveness, but the underlying mechanisms in medulloblastomas have not yet been clearly understood. The aim of the present study was to determine whether hypoxia induces resistance to cyclophosphamide (CPA) and ifosfamide (IFA) in DAOY medulloblastoma cells, whether the mechanism is dependent on HIF-1α, and whether involves the modulation of the expression of cytochromes P450 (CYP)2B6, 3A4 and 3A5 and the control of cell proliferation. Monolayer cultures of DAOY medulloblastoma cells were exposed for 24 h to moderate (1% O2) or severe (0.1% O2) hypoxia, and protein expression was evaluated by immunoblotting. Cytotoxicity was studied with the MTT assay and by Annexin V/PI staining and flow cytometry. Cell proliferation was determined by the trypan-blue exclusion assay and cell cycle by propidium iodide staining and flow cytometry. Hypoxia decreased CPA and IFA cytotoxicity in medulloblastoma cells, which correlated with a reduction in the protein levels of CYP2B6, CYP3A4 and CYP3A5 and inhibition of cell proliferation. These responses were dependent on hypoxia-induced HIF-1α activation, as evidenced by chemical inhibition of its transcriptional activity with 2-methoxyestradiol (2-ME), which enhanced the cytotoxic activity of CPA and IFA and increased apoptosis. Our results indicate that by stimulating HIF-1α activity, hypoxia downregulates the expression of CYP2B6, CYP3A4 and CYP3A5, that in turn leads to decreased conversion of CPA and IFA into their active forms and thus to diminished cytotoxicity. These results support that the combination of HIF-1α inhibitors and canonical antineoplastic agents provides a potential therapeutic alternative against medulloblastoma.
Collapse
Affiliation(s)
- Jesús Valencia-Cervantes
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Sara Huerta-Yepez
- Oncology Disease Research Unit, Children's Hospital of Mexico 'Federico Gomez', Mexico City 06720, Mexico
| | - Guillermo Aquino-Jarquín
- Laboratory of Research on Genomics, Genetics and Bioinformatics, Haemato‑Oncology Building, Children's Hospital of Mexico 'Federico Gomez', Mexico City 06720, Mexico
| | - Sara Rodríguez-Enríquez
- Department of Biochemistry,National Institute of Cardiology 'Ignacio Chavez', Mexico City 14080, Mexico
| | - Daniel Martínez-Fong
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - José-Antonio Arias-Montaño
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | | |
Collapse
|
11
|
Han J, Oh S, Hoang HH, Nguyen DTT, Lim W, Shin TH, Lee G, Park S. Recapitulation of cancer stem cell niches in glioblastoma on 3D microfluidic cell culture devices under gravity-driven perfusion. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Gomez H. Quantitative analysis of the proliferative-to-invasive transition of hypoxic glioma cells. Integr Biol (Camb) 2017; 9:257-262. [DOI: 10.1039/c6ib00208k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Impact of the proliferative-to-invasive transformation of glioma cells on the global growth kinetics of the tumor.
Collapse
Affiliation(s)
- Hector Gomez
- School of Mechanical Engineering
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
13
|
Hoang NTH, Kadonosono T, Kuchimaru T, Kizaka-Kondoh S. Hypoxia-inducible factor-targeting prodrug TOP3 combined with gemcitabine or TS-1 improves pancreatic cancer survival in an orthotopic model. Cancer Sci 2016; 107:1151-8. [PMID: 27270607 PMCID: PMC4982586 DOI: 10.1111/cas.12982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 01/25/2023] Open
Abstract
Pancreatic cancer is one of the most lethal digestive system cancers with a 5‐year survival rate of 4–7%. Despite extensive efforts, recent chemotherapeutic regimens have provided only limited benefits to pancreatic cancer patients. Gemcitabine and TS‐1, the current standard‐of‐care chemotherapeutic drugs for treatment of this severe cancer, have a low response rate. Hypoxia is one of the factors contributing to treatment resistance. Specifically, overexpression of hypoxia‐inducible factor, a master transcriptional regulator of cell adaption to hypoxia, is strongly correlated with poor prognosis in many human cancers. TAT‐ODD‐procaspase‐3 (TOP3) is a protein prodrug that is specifically processed and activated in hypoxia‐inducible factor‐active cells in cancers, leading to cell death. Here, we report combination therapies in which TOP3 was combined with gemcitabine or TS‐1. As monotherapy, gemcitabine and TS‐1 showed a limited effect on hypoxic and starved pancreatic cancer cells, whereas co‐treatment with TOP3 successfully overcame this limitation in vitro. Furthermore, combination therapies of TOP3 with these drugs resulted in a significant improvement in survival of orthotopic pancreatic cancer models involving the human pancreatic cancer cell line SUIT‐2. Overall, our study indicates that the combination of TOP3 with current chemotherapeutic drugs can significantly improve treatment outcome, offering a promising new therapeutic option for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Hong Hoang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takahiro Kuchimaru
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
14
|
Levy R, Held M, Mason D, Comenge J, Carolan G, Cowman S. The Spherical Nucleic Acids mRNA Detection Paradox. SCIENCEOPEN RESEARCH 2015. [DOI: 10.14293/s2199-1006.1.sor-chem.az1mju.v2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
<p>From the 1950s onwards, our understanding of the formation and intracellular trafficking of membrane vesicles was informed by experiments in which cells were exposed to gold nanoparticles and their uptake and localisation, studied by electron microscopy. In the last decade, building on progress in the synthesis of gold nanoparticles and their controlled functionalisation with a large variety of biomolecules (DNA, peptides, polysaccharides), new applications have been proposed, including the imaging and sensing of intracellular events. Yet, as already demonstrated in the 1950s, uptake of nanoparticles results in confinement within an intracellular vesicle which in principle should preclude sensing of cytosolic events. To study this apparent paradox, we focus on a commercially available nanoparticle probe that detects mRNA through the release of a fluorescently-labelled oligonucleotide (unquenching the fluorescence) in the presence of the target mRNA. Using electron, fluorescence and photothermal microscopy, we show that the probes remain in endocytic compartments and that they do not report on mRNA level. We suggest that the validation of any nanoparticle-based probes for intracellular sensing should include a quantitative and thorough demonstration that the probes can reach the cytosolic compartment.</p>
Collapse
|