1
|
Gata2a Mutation Causes Progressive Microphthalmia and Blindness in Nile Tilapia. Int J Mol Sci 2023; 24:ijms24043567. [PMID: 36834978 PMCID: PMC9958714 DOI: 10.3390/ijms24043567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The normal development of lens fiber cells plays a critical role in lens morphogenesis and maintaining transparency. Factors involved in the development of lens fiber cells are largely unknown in vertebrates. In this study, we reported that GATA2 is essential for lens morphogenesis in Nile tilapia (Oreochromis niloticus). In this study, Gata2a was detected in the primary and secondary lens fiber cells, with the highest expression in primary fiber cells. gata2a homozygous mutants of tilapia were obtained using CRISPR/Cas9. Different from fetal lethality caused by Gata2/gata2a mutation in mice and zebrafish, some gata2a homozygous mutants of tilapia are viable, which provides a good model for studying the role of gata2 in non-hematopoietic organs. Our data showed that gata2a mutation caused extensive degeneration and apoptosis of primary lens fiber cells. The mutants exhibited progressive microphthalmia and blindness in adulthood. Transcriptome analysis of the eyes showed that the expression levels of almost all genes encoding crystallin were significantly down-regulated, while the expression levels of genes involved in visual perception and metal ion binding were significantly up-regulated after gata2a mutation. Altogether, our findings indicate that gata2a is required for the survival of lens fiber cells and provide insights into transcriptional regulation underlying lens morphogenesis in teleost fish.
Collapse
|
2
|
Zhang B, Zhao N, Peng K, He X, Chen CX, Liu H, Liu K, Jia L, Bao B. A combination of genome-wide association study screening and SNaPshot for detecting sex-related SNPs and genes in Cynoglossus semilaevis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100711. [PMID: 32683285 DOI: 10.1016/j.cbd.2020.100711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022]
Abstract
Chinese tongue sole (Cynoglossus semilaevis) males and females exhibit great differences in growth rate and appearance. The species is heterogametic (ZW/ZZ) and has sex-reversed "pseudomales" that are genetically female and physiologically male. In this study, we identified eight sex-specific single nucleotide polymorphism (SNP) markers for the sex identification of C. semilaevis by using a combination of genome-wide association study (GWAS) screening and SnaPshot validation. Candidate SNPs were screened using genotyping by sequencing to perform GWAS of the differential SNPs between the sexes of C. semilaevis. The SNP loci were amplified using a multiplex PCR system and detected via SNaPshot, which enables multiplexing of up to 30-40 SNPs in a single assay and ensures high accuracy of the results. The molecular markers detected in our study were used to successfully identify normal males and pseudomales from 45 caught and 40 cultured C. semilaevis specimens. Linkage disequilibrium analysis showed that the eight SNP loci were related to each other, with a strong linkage. Moreover, we investigated the expression of prdm6 mRNA containing a missense SNP and confirmed that the gene is differentially expressed in the gonads of the different sexes of C. semilaevis; the expression of prdm6 mRNA was significantly higher in the males than in the females and pseudomales. This means prdm6 may be related to sex differentiation in C. semilaevis.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Tianjin Fisheries Research Institute, Tianjin, China
| | - Na Zhao
- Tianjin Medicine Biotechnology Co, Ltd, Tianjin, China
| | - Kangkang Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Chun Xiu Chen
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Hao Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Kefeng Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Dobrzycki T, Mahony CB, Krecsmarik M, Koyunlar C, Rispoli R, Peulen-Zink J, Gussinklo K, Fedlaoui B, de Pater E, Patient R, Monteiro R. Deletion of a conserved Gata2 enhancer impairs haemogenic endothelium programming and adult Zebrafish haematopoiesis. Commun Biol 2020; 3:71. [PMID: 32054973 PMCID: PMC7018942 DOI: 10.1038/s42003-020-0798-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Gata2 is a key transcription factor required to generate Haematopoietic Stem and Progenitor Cells (HSPCs) from haemogenic endothelium (HE); misexpression of Gata2 leads to haematopoietic disorders. Here we deleted a conserved enhancer (i4 enhancer) driving pan-endothelial expression of the zebrafish gata2a and showed that Gata2a is required for HE programming by regulating expression of runx1 and of the second Gata2 orthologue, gata2b. By 5 days, homozygous gata2aΔi4/Δi4 larvae showed normal numbers of HSPCs, a recovery mediated by Notch signalling driving gata2b and runx1 expression in HE. However, gata2aΔi4/Δi4 adults showed oedema, susceptibility to infections and marrow hypo-cellularity, consistent with bone marrow failure found in GATA2 deficiency syndromes. Thus, gata2a expression driven by the i4 enhancer is required for correct HE programming in embryos and maintenance of steady-state haematopoietic stem cell output in the adult. These enhancer mutants will be useful in exploring further the pathophysiology of GATA2-related deficiencies in vivo.
Collapse
Affiliation(s)
- Tomasz Dobrzycki
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Christopher B Mahony
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Monika Krecsmarik
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- BHF Centre of Research Excellence, Oxford, UK
| | - Cansu Koyunlar
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Rossella Rispoli
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Division of Genetics and Molecular Medicine, NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Joke Peulen-Zink
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Bakhta Fedlaoui
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Roger Patient
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- BHF Centre of Research Excellence, Oxford, UK
| | - Rui Monteiro
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
- BHF Centre of Research Excellence, Oxford, UK.
| |
Collapse
|
4
|
Yu H, Wang Y, Li X, Ni F, Sun M, Zhang Q, Yu H, Wang X. The evolution and possible role of two Sox8 genes during sex differentiation in Japanese flounder (Paralichthys olivaceus). Mol Reprod Dev 2019; 86:592-607. [PMID: 30811727 DOI: 10.1002/mrd.23136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023]
Abstract
Sox8 genes, as members of the Sox family, have been studied widely in mammals. However, regulation of sox8 genes in teleosts has rarely been studied, and functional analysis of these genes in teleosts has rarely been performed. Here, two duplicates of sox8 genes were identified in Japanese flounder, Posox8a and Posox8b. The analysis of expression showed that Posox8a and Posox8b were expressed in Sertoli cells of the testis, indicating that they play important roles in development and functional maintenance of the testis. Positive selection and phylogenetic analysis found that both Posox8a and Posox8b underwent the purification selection during evolutionary and that sox8 was most likely to be the ancestor sox8a. These results suggested that both Posox8a and Posox8b had important biological functions after generation from three rounds of whole-genome duplication in Japanese flounder. The functional differentiation of Posox8a and Posox8b was verified using cell transfection and dual-luciferase reporter assays; Posox8a overexpression-promoted 3β-hydroxysteroid dehydrogenase expression and Posox8b overexpression-promoted cytochrome P450 aromatase (cyp19a1; P450arom) expression. Finally, combined with Posox8a and Posox8b expression analysis from 30 to 100 days after hatch, we speculated that Posox8a and Posox8b might participate in the process of sex differentiation and gonadogenesis by regulating sex hormone biosynthesis in the Japanese flounder. Our study is the first to demonstrate the possible mechanism of Posox8a and Posox8b in Japanese flounder sex differentiation and gonadogenesis, laying a solid foundation for functional studies of sox8 genes in teleosts.
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xiaojing Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Feifei Ni
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Minmin Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|