1
|
Plaza-Florido A, Gálvez BG, López JA, Santos-Lozano A, Zazo S, Rincón-Castanedo C, Martín-Ruiz A, Lumbreras J, Terron-Camero LC, López-Soto A, Andrés-León E, González-Murillo Á, Rojo F, Ramírez M, Lucia A, Fiuza-Luces C. Exercise and tumor proteome: insights from a neuroblastoma model. Physiol Genomics 2024; 56:833-844. [PMID: 39311839 PMCID: PMC11573273 DOI: 10.1152/physiolgenomics.00064.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 11/12/2024] Open
Abstract
The impact of exercise on pediatric tumor biology is essentially unknown. We explored the effects of regular exercise on tumor proteome profile (as assessed with liquid chromatography with tandem mass spectrometry) in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma (HR-NB). Tumor samples of 14 male mice (aged 6-8 wk) that were randomly allocated into an exercise (5-wk combined aerobic and resistance training) or nonexercise control group (6 and 8 mice/group, respectively) were analyzed. The Search Tool for the Retrieval of Interacting Genes/Proteins database was used to generate a protein-protein interaction (PPI) network and enrichment analyses. The Systems Biology Triangle (SBT) algorithm was applied for analyses at the functional category level. Tumors of exercised mice showed a higher and lower abundance of 101 and 150 proteins, respectively, than controls [false discovery rate (FDR) < 0.05]. These proteins were enriched in metabolic pathways, amino acid metabolism, regulation of hormone levels, and peroxisome proliferator-activated receptor signaling (FDR < 0.05). The SBT algorithm indicated that 184 and 126 categories showed a lower and higher abundance, respectively, in the tumors of exercised mice (FDR < 0.01). Categories with lower abundance were involved in energy production, whereas those with higher abundance were related to transcription/translation, apoptosis, and tumor suppression. Regular exercise altered the abundance of hundreds of intratumoral proteins and molecular pathways, particularly those involved in energy metabolism, apoptosis, and tumor suppression. These findings provide preliminary evidence of the molecular mechanisms underlying the potential effects of exercise in HR-NB.NEW & NOTEWORTHY We used liquid chromatography with tandem mass spectrometry to explore the impact of a 5-wk exercise intervention on the tumor proteome profile in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma. Exercise altered the abundance of hundreds of proteins and pathways, particularly those involved in energy metabolism and tumor suppression. These molecular changes could mediate, at least partly, the potential antitumorigenic effects of exercise.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, California, United States
| | - Beatriz G Gálvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Santos-Lozano
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
- i+HeALTH, Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Sandra Zazo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD, UAM)-CIBERONC, Madrid, Spain
| | | | - Asunción Martín-Ruiz
- Department of Cellular Biology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Lumbreras
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Laura C Terron-Camero
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Alejandro López-Soto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Asturias, Spain
| | - Eduardo Andrés-León
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - África González-Murillo
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Rojo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD, UAM)-CIBERONC, Madrid, Spain
| | - Manuel Ramírez
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre, Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | |
Collapse
|
2
|
Hu F, Chen B, Wang Q, Yang Z, Chu M. Multi-omics data analysis reveals the biological implications of alternative splicing events in lung adenocarcinoma. J Bioinform Comput Biol 2023; 21:2350020. [PMID: 37694487 DOI: 10.1142/s0219720023500208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cancer is characterized by the dysregulation of alternative splicing (AS). However, the comprehensive regulatory mechanisms of AS in lung adenocarcinoma (LUAD) are poorly understood. Here, we displayed the AS landscape in LUAD based on the integrated analyses of LUAD's multi-omics data. We identified 13,995 AS events in 6309 genes as differentially expressed alternative splicing events (DEASEs) mainly covering protein-coding genes. These DEASEs were strongly linked to "cancer hallmarks", such as apoptosis, DNA repair, cell cycle, cell proliferation, angiogenesis, immune response, generation of precursor metabolites and energy, p53 signaling pathway and PI3K-AKT signaling pathway. We further built a regulatory network connecting splicing factors (SFs) and DEASEs. In addition, RNA-binding protein (RBP) mutations that can affect DEASEs were investigated to find some potential cancer drivers. Further association analysis demonstrated that DNA methylation levels were highly correlated with DEASEs. In summary, our results can bring new insight into understanding the mechanism of AS and provide novel biomarkers for personalized medicine of LUAD.
Collapse
Affiliation(s)
- Fuyan Hu
- Department of Statistics, School of Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, P. R. China
| | - Bifeng Chen
- Department of Biological Science and Technology, School of Chemistry Chemical Engineering and Life Sciences, Wuhan University of Technology Wuhan, Hubei, P. R. China
| | - Qing Wang
- Department of Traditional Chinese Medicine of Wuhan Puren Hospital, Affiliated Hospital of Wuhan University of Science and Technology, 1# Benxi Street, Qingshan District, Wuhan, Hubei, P. R. China
| | - Zhiyuan Yang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, Zhejiang, P. R. China
| | - Man Chu
- The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P. R. China
| |
Collapse
|
3
|
Natani S, Ramakrishna M, Nallavolu T, Ummanni R. MicroRNA-147b induces neuroendocrine differentiation of prostate cancer cells by targeting ribosomal protein RPS15A. Prostate 2023; 83:936-949. [PMID: 37069746 DOI: 10.1002/pros.24535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the leading cause of cancer related deaths in men, often androgen deprivation therapy (ADT) leads to the progression of androgen independent PCa (AIPC) which further leads to Neuroendocrine PCa (NEPC). Identifying the molecular mechanisms which navigate the neuroendocrine differentiation (NED) of PCa cells is clinically relevant. It has been suggested that the micro RNAs (miRNAs) play an important role in the regulation of intrinsic mechanisms relevant to tumor progression, resistance as a result leads to poor prognosis. miR-147b has been transpiring as one of the deregulated miRNAs associated with the occurrence of multiple cancers. The present study has studied the role of miRNA-147b in inducing NEPC. METHODS To investigate the functional role of miR-147b in NEPC, we have expressed miRNA mimics or inhibitors in PCa cells and monitored the progression of NEPC along with PCa cell proliferation and survival. The molecular mechanism miRNA-147b follows was studied using western blot and reverse transcription polymerase chain analysis. miRNA target prediction using bioinformatics tools followed by target validation using luciferase reporter assays was performed. RESULTS In the present study, we found that miR-147b is highly expressed in AIPC cell lines in particular neuroendocrine cells NCI-H660 and NE-LNCaP derived from LNCaP. Mechanistic studies revealed that overexpression of miR-147b or miRNA mimics induced NED in LNCaP cells in in-vitro while its inhibitor reversed the NE features (increased NE markers and reduced prostate specific antigen) of PC3, NCI-H660 and NE-LNCaP cells. In addition, miR-147b reduced the proliferation rate of LNCaP cells via elevated p27kip1 and lowered cyclin D1 for promoting differentiation. In reporter assays, we have identified ribosomal protein S15A (RPS15A) is a direct target of miRNA-147b and RPS15A expression was negatively regulated by miR-147b in PCa cells. Furthermore, we also report that RPS15A is downregulated in NEPC cells and its expression is inversely correlated with NE markers. CONCLUSION Targeting the miR-147b - RPS15A axis may overcome the progression of NEPC and serve as a novel therapeutic target to attenuate NED progression of PCa.
Collapse
Affiliation(s)
- Sirisha Natani
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Maresha Ramakrishna
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Teja Nallavolu
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Xu W, Li Y, Ye X, Ji Y, Chen Y, Zhang X, Li Z. TMED3/RPS15A Axis promotes the development and progression of osteosarcoma. Cancer Cell Int 2021; 21:630. [PMID: 34838013 PMCID: PMC8626936 DOI: 10.1186/s12935-021-02340-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Osteosarcoma is a primary malignant tumor that mainly affects children and young adults. Transmembrane emp24 trafficking protein 3 (TMED3) may be involved in the regulation of malignant cancer behaviors. However, the role of TMED3 in osteosarcoma remains mysterious. In this study, the potential biological function and underlying mechanism of TMED3 in progression of osteosarcoma was elaborated. METHODS The expression of TMED3 in osteosarcoma was analyzed by immunohistochemical staining. The biological function of TMED3 in osteosarcoma was determined through loss-of-function assays in vitro. The effect of TMED3 downregulation on osteosarcoma was further explored by xenograft tumor model. The molecular mechanism of the regulation of TMED3 on osteosarcoma was determined by gene expression profile analysis. RESULTS The expression of TMED3 in osteosarcoma tissues was significantly greater than that in matched adjacent normal tissues. Knockdown of TMED3 inhibited the progression of osteosarcoma by suppressing proliferation, impeding migration and enhancing apoptosis in vitro. We further validated that knockdown of TMED3 inhibited osteosarcoma generation in vivo. Additionally, ribosomal protein S15A (RPS15A) was determined as a potential downstream target for TMED3 involved in the progression of osteosarcoma. Further investigations elucidated that the simultaneous knockdown of RPS15A and TMED3 intensified the inhibitory effects on osteosarcoma cells. Importantly, knockdown of RPS15A alleviated the promotion effects of TMED3 overexpression in osteosarcoma cells. CONCLUSIONS In summary, these findings emphasized the importance of TMED3/RPS15A axis in promoting tumor progression, which may be a promising candidate for molecular therapy of osteosarcoma.
Collapse
Affiliation(s)
- Wei Xu
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Yifan Li
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Xiaojian Ye
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Yunhan Ji
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Yu Chen
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Xiangyang Zhang
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Zhikun Li
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Su Z, Gu Y. Identification of key genes and pathways involved in abdominal aortic aneurysm initiation and progression. Vascular 2021; 30:639-649. [PMID: 34139912 DOI: 10.1177/17085381211026474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The study aimed to assess the gene expression profile of biopsies obtained from the neck of human abdominal aortic aneurysm (AAA) and the main site of AAA dilatation and to investigate the molecular mechanism underlying the development of AAA. METHODS The microarray profile of GSE47472 and GSE57691 were obtained from the Gene Expression Omnibus (GEO) database. The GSE47472 was a microarray dataset of tissues from the aortic neck of AAA patients versus normal controls. The GSE57691 was a microarray dataset including the tissues from main site of AAA dilatation versus normal controls. Differentially expressed genes (DEGs) were chosen using the R package and annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG). The hub genes were identified in the protein-protein interaction (PPI) network. RESULTS 342 upregulated DEGs and 949 downregulated DEGs were obtained from GSE47472. The upregulated DEGs were mainly enriched in biological regulation (ontology: BP), the membrane (ontology: CC), and protein binding (ontology: MF), and the downregulated genes were mainly enriched in biological regulation (ontology: BP), the membrane (ontology: CC), and protein blinding (ontology: MF). In the KEGG enrichment analysis, the DEGs mainly involved glycosaminoglycan degradation, vasopressin-regulated water reabsorption, and pyruvate metabolism. The hub genes in GSE47472 mainly include VAMP8, PTPRC, DYNLL1, RPL38, RPS4X, HNRNPA1, PRMT1, TGOLN2, PA2G4, and CUL2. From GSE57691, 248 upregulated DEGs and 1120 downregulated DEGs were selected. The upregulated DEGs of GSE57691 were mainly enriched in biological regulation (ontology: BP), the membrane (ontology: CC), and protein binding (ontology: MF), and the downregulated genes were mainly enriched in metabolic process (ontology: BP), the membrane (ontology: CC), and protein blinding (ontology: MF). In the KEGG enrichment analysis, the DEGs mainly involved the mitochondrial respiratory, respiratory chain complex, and respiratory chain. RPS15A, RPS5, RPL23, RPL27A, RPS24, RPL35A, RPS4X, RPL7, RPS25, and RPL21 were identified as the hub genes. CONCLUSION At the early stage of AAA, the current study indicated the importance of glycosaminoglycan degradation and anaerobic metabolism. We also identified several hub genes closely related to AAA (VAMP8, PTPRC, DYNLL1, etc.). At the progression of the AAA, the dysfunctional mitochondria played a critical role in AAA formation and the RPS15A, RPS5, RPL23, etc., were identified as the hub genes.
Collapse
Affiliation(s)
- Zhixiang Su
- Department of Vascular Surgery, 71044Xuanwu Hospital, Capital Medical University, Beijing,China
| | - Yongquan Gu
- Department of Vascular Surgery, 71044Xuanwu Hospital, Capital Medical University, Beijing,China
| |
Collapse
|
6
|
Origgi FC, Otten P, Lohmann P, Sattler U, Wahli T, Lavazza A, Gaschen V, Stoffel MH. Herpesvirus-Associated Proliferative Skin Disease in Frogs and Toads: Proposed Pathogenesis. Vet Pathol 2021; 58:713-729. [PMID: 33813961 DOI: 10.1177/03009858211006385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A comparative study was carried out on common and agile frogs (Rana temporaria and R. dalmatina) naturally infected with ranid herpesvirus 3 (RaHV3) and common toads (Bufo bufo) naturally infected with bufonid herpesvirus 1 (BfHV1) to investigate common pathogenetic pathways and molecular mechanisms based on macroscopic, microscopic, and ultrastructural pathology as well as evaluation of gene expression. Careful examination of the tissue changes, supported by in situ hybridization, at different stages of development in 6 frogs and 14 toads revealed that the skin lesions are likely transient, and part of a tissue cycle necessary for viral replication in the infected hosts. Transcriptomic analysis, carried out on 2 naturally infected and 2 naïve common frogs (Rana temporaria) and 2 naturally infected and 2 naïve common toads (Bufo bufo), revealed altered expression of genes involved in signaling and cell remodeling in diseased animals. Finally, virus transcriptomics revealed that both RaHV3 and BfHV1 had relatively high expression of a putative immunomodulating gene predicted to encode a decoy receptor for tumor necrosis factor in the skin of the infected hosts. Thus, the comparable lesions in infected frogs and toads appear to reflect a concerted epidermal and viral cycle, with presumptive involvement of signaling and gene remodeling host and immunomodulatory viral genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Lavazza
- 18207Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emila Romagna, Brescia, Italy
| | | | | |
Collapse
|
7
|
Kelemen O, Pla I, Sanchez A, Rezeli M, Szasz AM, Malm J, Laszlo V, Kwon HJ, Dome B, Marko-Varga G. Proteomic analysis enables distinction of early- versus advanced-stage lung adenocarcinomas. Clin Transl Med 2020; 10:e106. [PMID: 32536039 PMCID: PMC7403673 DOI: 10.1002/ctm2.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background A gel‐free proteomic approach was utilized to perform in‐depth tissue protein profiling of lung adenocarcinoma (ADC) and normal lung tissues from early and advanced stages of the disease. The long‐term goal of this study is to generate a large‐scale, label‐free proteomics dataset from histologically well‐classified lung ADC that can be used to increase further our understanding of disease progression and aid in identifying novel biomarkers. Methods and results Cases of early‐stage (I‐II) and advanced‐stage (III‐IV) lung ADCs were selected and paired with normal lung tissues from 22 patients. The histologically and clinically stratified human primary lung ADCs were analyzed by liquid chromatography‐tandem mass spectrometry. From the analysis of ADC and normal specimens, 4863 protein groups were identified. To examine the protein expression profile of ADC, a peak area‐based quantitation method was used. In early‐ and advanced‐stage ADC, 365 and 366 proteins were differentially expressed, respectively, between normal and tumor tissues (adjusted P‐value < .01, fold change ≥ 4). A total of 155 proteins were dysregulated between early‐ and advanced‐stage ADCs and 18 were suggested as early‐specific stage ADC. In silico functional analysis of the upregulated proteins in both tumor groups revealed that most of the enriched pathways are involved in mRNA metabolism. Furthermore, the most overrepresented pathways in the proteins that were unique to ADC are related to mRNA metabolic processes. Conclusions Further analysis of these data may provide an insight into the molecular pathways involved in disease etiology and may lead to the identification of biomarker candidates and potential targets for therapy. Our study provides potential diagnostic biomarkers for lung ADC and novel stage‐specific drug targets for rational intervention.
Collapse
Affiliation(s)
- Olga Kelemen
- Clinical Protein Science and Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Indira Pla
- Clinical Protein Science and Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science and Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Melinda Rezeli
- Clinical Protein Science and Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Attila Marcell Szasz
- Clinical Protein Science and Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden.,Cancer Center, Semmelweis University, Budapest, Hungary.,Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Johan Malm
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Viktoria Laszlo
- Department of Surgery, Division of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Ho Jeong Kwon
- Clinical Protein Science and Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden.,Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Balazs Dome
- Department of Surgery, Division of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Gyorgy Marko-Varga
- Clinical Protein Science and Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Ning Q, Pang Y, Shao S, Luo M, Zhao L, Hu T, Zhao X. MicroRNA-147b suppresses the proliferation and invasion of non-small-cell lung cancer cells through downregulation of Wnt/β-catenin signalling via targeting of RPS15A. Clin Exp Pharmacol Physiol 2019; 47:449-458. [PMID: 31665807 DOI: 10.1111/1440-1681.13203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 01/22/2023]
Abstract
Deregulation of microRNAs (miRNAs) leads to malignant growth and aggressive invasion during cancer occurrence and progression. miR-147b has emerged as one of the cancer-related miRNAs that are dysregulated in multiple cancers. Yet, the relevance of miR-147b in non-small-cell lung cancer (NSCLC) remains unclear. In the present study, we aimed to report the biological function and signalling pathways mediated by miR-147b in NSCLC. Our results demonstrate that miR-147b expression is significantly downregulated in NSCLC tissues and cell lines. Overexpression of miR-147b decreased the proliferative ability, colony-forming capability, and invasive potential of NSCLC cells. Notably, our study identified ribosomal protein S15A (RPS15A), an oncogene in NSCLC, as a target gene of miR-147b. Our results showed that miR-147b negatively modulates RPS15A expression in NSCLC cells. An inverse correlation between miR-147b and RPS15A was evidenced in NSCLC specimens. Moreover, miR-147b overexpression downregulated the activation of Wnt/β-catenin signalling via targeting of RPS15A. Overexpression of RPS15A partially reversed the miR-147b-mediated antitumour effect in NSCLC cells. Collectively, these findings reveal that miR-147b restricts the proliferation and invasion of NSCLC cells by inhibiting RPS15A-induced Wnt/β-catenin signalling and suggest that the miR-147b/RPS15A/Wnt/β-catenin axis is an important regulatory mechanism for malignant progression of NSCLC.
Collapse
Affiliation(s)
- Qian Ning
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yamei Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Shao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minna Luo
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lin Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tinghua Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Kong L, Wei Q, Hu X, Chen L, Li J. Ribosomal protein small subunit 15A (RPS15A) inhibits the apoptosis of breast cancer MDA-MB-231 cells via upregulating phosphorylated ERK1/2, Bad, and Chk1. J Cell Biochem 2019; 121:587-595. [PMID: 31535410 DOI: 10.1002/jcb.29304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022]
Abstract
AIM To detect the expression and identify the role of Ribosomal protein S15A (RPS15A) in human breast cancer (BC). METHODS Immunohistochemistry (IHC) was carried out for detecting the levels of RPS15A protein. Quantitative PCR was used to evaluate the mRNA level of RPS15A in one normal breast and three BC cell lines. Lentivirus-mediated shRNA targeting RPS15A was designed to investigate the impact of silencing RPS15A in MDA-MB-231 cell. RESULTS Higher RPS15A expression was detected in tumor tissues than in para-cancer tissues, and higher RPS15A expression was related to larger tumor size and higher TNM stage. Also, RPS15A mRNA expression in all three BC cell lines was higher than that in normal breast cell (all P < .005). Further, RPS15A knockdown significantly suppressed MDA-MB-231 cell proliferation and induced apoptosis. Moreover, RPS15A knockdown increased the caspase-3/-7 activity, and suppressed the phosphorylated levels of ERK1/2, Bad, and Chk1 (all P < .01). CONCLUSION RPS15A inhibits apoptosis via upregulating phosphorylated ERK1/2, Bad, and Chk1 in MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Lingsuo Kong
- Department of Anesthesiology, Division of life Sciences and Medicine, West district of The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing Wei
- Department of Anesthesiology, Division of life Sciences and Medicine, West district of The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianwen Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lanren Chen
- Department of Anesthesiology, Division of life Sciences and Medicine, West district of The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, Anhui, China
| | - Juan Li
- Department of Anesthesia, Qilu Medical College of Shandong University, Jinan, China
| |
Collapse
|
10
|
Liang J, Liu Y, Zhang L, Tan J, Li E, Li F. Overexpression of microRNA-519d-3p suppressed the growth of pancreatic cancer cells by inhibiting ribosomal protein S15A-mediated Wnt/β-catenin signaling. Chem Biol Interact 2019; 304:1-9. [PMID: 30831090 DOI: 10.1016/j.cbi.2019.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022]
Abstract
Ribosomal protein S15A (RPS15A) has emerged as a novel oncogene of various human cancers. However, whether RPS15A is involved in pancreatic cancer remains unclear. In this study, we aimed to investigate the potential relevance of RPS15A in pancreatic cancer and elucidate the underlying regulatory mechanism. We found that RPS15A expression was significantly up-regulated in pancreatic cancer cell lines. RPS15A knockdown resulted in a decrease of cell proliferation and colony formation, and induced cell cycle arrest in G0/G1 phases of pancreatic cancer cells in vitro. In addition, RPS15A knockdown down-regulated β-catenin expression and blocked the activation of Wnt signaling. Notably, RPS15A was identified as a target gene of microRNA-519d-3p (miR-519d-3p), a tumor suppressive miRNA. Further data showed that miR-519d-3p negatively regulated RPS15A expression in pancreatic cancer cells. Moreover, miR-591d-3p expression was significantly decreased in pancreatic cancer cell lines and tissues and was inversely correlated with RPS15A expression. The overexpression of miR-519d-3p significantly inhibited the proliferation and Wnt/β-catenin signaling in pancreatic cancer cells, mimicking the similar effect of RPS15A knockdown. However, restoration of RPS15A expression partially reversed the antitumor effect of miR-519d-3p. Taken together, our results demonstrate that RPS15A knockdown or RPS15A inhibition by miR-519d-3p suppresses the growth of pancreatic cancer cells associated with the inhibition of Wnt/β-catenin signaling. Our study suggests that the miR-519d-3p/RPS15A/Wnt/β-catenin regulation axis plays an important role in the progression of pancreatic cancer and may serve as potential targets for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jing Liang
- Medical Oncology, First Affiliated Hospital of Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China; Radiotherapy Department, Shaanxi Provincial Tumor Hospital, Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Yongcun Liu
- Department of Oncology, The First People's Hospital of Xianyang, Xianyang, Shaanxi Province, 712000, China
| | - Lei Zhang
- Department of Geriatric Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jing Tan
- Anesthesiology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Enxiao Li
- Medical Oncology, First Affiliated Hospital of Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| | - Feng Li
- Anesthesiology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| |
Collapse
|
11
|
Liu C, He X, Liu X, Yu J, Zhang M, Yu F, Wang Y. RPS15A promotes gastric cancer progression via activation of the Akt/IKK-β/NF-κB signalling pathway. J Cell Mol Med 2019; 23:2207-2218. [PMID: 30661291 PMCID: PMC6378197 DOI: 10.1111/jcmm.14141] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the clinical significance, potential biological function and underlying mechanism of RPS15A in gastric cancer (GC) progression. RPS15A expression was detected in 40 pairs of GC tissues and matched normal gastric mucosae (MNGM) using qRT‐PCR analysis. Immunohistochemistry assay was conducted using a tissue microarray including 186 primary GC samples to characterize the clinical significance of RPS15A. A series of in vitro and in vivo assays were performed to elucidate the biological function of RPS15A in GC development and underlying molecular mechanisms. The expression of RPS15A was significantly up‐regulated in GC samples compared to MNGM, and its expression was closely related to TNM stage, tumour size, differentiation, lymph node metastasis and poor patient survival. Ectopic expression of RPS15A markedly enhanced the proliferation and metastasis of GC cells both in vitro and in vivo. RPS15A overexpression also promoted the epithelial‐mesenchymal transition (EMT) phenotype formation of GC cells. Investigations of underlying mechanisms found that RPS15A activated the NF‐κB signalling pathway by inducing the nuclear translocation and phosphorylation of the p65 NF‐κB subunit, transactivation of NF‐κB reporter and up‐regulating target genes of this pathway. In addition, RPS15A overexpression activated, while RPS15A knockdown inhibited the Akt/IKK‐β signalling axis in GC cells. And both Akt inhibitor LY294002 and IKK inhibitor Bay117082 neutralized the p65 and p‐p65 nuclear translocation induced by RPS15A overexpression. Collectively, our findings suggest that RPS15A activates the NF‐κB pathway through Akt/IKK‐β signalling axis, and consequently promotes EMT and GC metastasis. This newly identified RPS15A/Akt/IKK‐β/NF‐κB signalling pathway may be a potential therapeutic target to prevent GC progression.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xigan He
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Yu
- Department of Oncology, Rizhao Central Hospital, Rizhao, Shandong, China
| | - Meng Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fudong Yu
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - Yanong Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Liang J, Liu Z, Zou Z, Wang X, Tang Y, Zhou C, Wu K, Zhang F, Lu Y. Knockdown of ribosomal protein S15A inhibits human kidney cancer cell growth in vitro and in vivo. Mol Med Rep 2018; 19:1117-1127. [PMID: 30569143 PMCID: PMC6323228 DOI: 10.3892/mmr.2018.9751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/31/2018] [Indexed: 02/05/2023] Open
Abstract
Ribosomal protein S15A (RPS15A), a member of the ribosomal protein gene family, was demonstrated to be closely associated with tumorigenesis in multiple human malignancies. Nevertheless, the role of RPS15A in the progression of renal cell carcinoma (RCC) remains unknown. In the present study, by comparing the publicly available data from RCC tissues and reverse transcription-quantitative polymerase chain reaction results, it was identified that RPS15A was upregulated in RCC tissues and cell lines (P<0.001). Notably, knockdown of RPS15A suppressed 786-O cell proliferation (P<0.001) and promoted its apoptosis/necrotic (P=0.0001) in vitro. Additionally, tumour formation and growth of transfected 786-O cells were observed to be restrained in a mouse model (P<0.05). Subsequent to analysing the microarray data, 747 genes were differentially expressed in the RPS15A-knockdown 786-O cells. The enriched canonical pathways, diseases and functions of differentially expressed genes, and the interactive network of RPS15A in RCC were successfully constructed by ingenuity pathway analysis. Overall, the present results provided a preliminary experimental basis for RPS15A as a novel oncogene and potential therapeutic target in RCC.
Collapse
Affiliation(s)
- Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zijun Zou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiangxiu Wang
- Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongquan Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chuan Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Kan Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fuxun Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yiping Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
13
|
Shi D, Liu J. RPS15a Silencing Suppresses Cell Proliferation and Migration of Gastric Cancer. Yonsei Med J 2018; 59:1166-1173. [PMID: 30450850 PMCID: PMC6240561 DOI: 10.3349/ymj.2018.59.10.1166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/06/2018] [Accepted: 10/12/2018] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Information on the possible role of the ribosomal protein S15a (RPS15a) in gastric cancer is scarce. The aim of this study was to evaluate the impact of RPS15a gene expression on the growth and cell cycle of gastric cancer cells in vitro and in vivo. MATERIALS AND METHODS RPS15a mRNA expression was examined in cancer tissues and their corresponding adjacent normal tissues of 40 gastric adenocarcinoma patients. Next, RPS15a was knocked down using a lentivirus-mediated RNA interference (short hairpin RNA) system in the gastric cancer cell line BGC823. The effect of RPS15a knockdown was examined using CCK-8 assay, cell scratch test, colony formation assay, and flow cytometry. Finally, in nude mice, a tumorigenicity test was performed, and the tumor volume and weight were measured. RESULTS RPS15a expression in tumor tissue was significantly greater than that in the adjacent normal tissue of gastric cancer patients. After RPS15a silencing, the BGC823 cell proliferation rate decreased significantly; most cells were arrested in the G0/G1 phase, cell growth was inhibited, and the migration rate was decreased. Colony formation assay showed that the number and size of clones in the RPS15a-silenced cells were fewer and smaller, compared to control cells. The nude mouse tumorigenicity test showed that RPS15a silencing had an inhibitory effect on tumor volume and mice weight. CONCLUSION The present study found RPS15a expression to be higher in gastric tumors and its silencing in gastric cancer cells to inhibit the proliferation, growth, and migration thereof. Accordingly, RPS15a may be considered as a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Ding Shi
- Department of Gastroenterology, Ningbo No. 2 Hospital, Ningbo, China.
| | - Jinjin Liu
- Department of Gastroenterology, Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
14
|
Sheng M, Dong Z, Xie Y. Identification of tumor-educated platelet biomarkers of non-small-cell lung cancer. Onco Targets Ther 2018; 11:8143-8151. [PMID: 30532555 PMCID: PMC6241732 DOI: 10.2147/ott.s177384] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Lung cancer is a severe cancer with a high death rate. The 5-year survival rate for stage III lung cancer is much lower than stage I. Early detection and intervention of lung cancer patients can significantly increase their survival time. However, conventional lung cancer-screening methods, such as chest X-rays, sputum cytology, positron-emission tomography (PET), low-dose computed tomography (CT), magnetic resonance imaging, and gene-mutation, -methylation, and -expression biomarkers of lung tissue, are invasive, radiational, or expensive. Liquid biopsy is non-invasive and does little harm to the body. It can reflect early-stage dysfunctions of tumorigenesis and enable early detection and intervention. METHODS In this study, we analyzed RNA-sequencing data of tumor-educated platelets (TEPs) in 402 non-small-cell lung cancer (NSCLC) patients and 231 healthy controls. A total of 48 biomarker genes were selected with advanced minimal-redundancy, maximal-relevance, and incremental feature-selection (IFS) methods. RESULTS A support vector-machine (SVM) classifier based on the 48 biomarker genes accurately predicted NSCLC with leave-one-out cross-validation (LOOCV) sensitivity, specificity, accuracy, and Matthews correlation coefficients of 0.925, 0.827, 0.889, and 0.760, respectively. Network analysis of the 48 genes revealed that the WASF1 actin cytoskeleton module, PRKAB2 kinase module, RSRC1 ribosomal protein module, PDHB carbohydrate-metabolism module, and three intermodule hubs (TPM2, MYL9, and PPP1R12C) may play important roles in NSCLC tumorigenesis and progression. CONCLUSION The 48-gene TEP liquid-biopsy biomarkers will facilitate early screening of NSCLC and prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Meiling Sheng
- Department of Respiration, Jinhua People's Hospital, Jinhua, Zhejiang 321000, China
| | - Zhaohui Dong
- Department of Intensive Care Unit, First Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, China
| | - Yanping Xie
- Department of Respiratory Medicine, First Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, China,
| |
Collapse
|
15
|
Liu L, Zhang P, Guo H, Tang X, Liu L, Li J, Guo R, Cai Y, Liu Y, Li Y. Co‑expression of murine double minute 2 siRNA and wild‑type p53 induces G1 cell cycle arrest in H1299 cells. Mol Med Rep 2017; 16:9137-9142. [PMID: 29039579 DOI: 10.3892/mmr.2017.7766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 08/07/2017] [Indexed: 11/06/2022] Open
Abstract
The therapeutic options available for the treatment of advanced non-small cell lung cancer have increased over the past decade. Small molecule gene therapy has emerged as an effective therapy for the treatment of lung cancer in vitro and in vivo although it has not been tested in a clinical setting. In particular, therapies that target the negative feedback loop between p53 and murine double minute 2 (MDM2) provide a favorable outcome by maintaining activation of the tumor suppressor gene p53. The present study used transfection to simultaneously knockdown MDM2 expression using small interfering (si)RNA, and overexpress wild‑type p53 in H1299 cells. The effects of transfection on cell proliferation and cell cycle progression were determined using an MTT assay and flow cytometry, and the effects on mRNA and protein expression were determined by western blotting and reverse transcription polymerase chain reaction. The results indicated that simultaneously knocking down MDM2 and overexpressing p53 was able to inhibit proliferation and induce G1 cell cycle arrest in H1299 cells, compared with either alone. These findings indicated that the si‑MDM2‑p53 co‑expression plasmid may induce cell cycle arrest, and may be considered a novel therapeutic option for the treatment of lung cancer.
Collapse
Affiliation(s)
- Long Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ping Zhang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hua Guo
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinyu Tang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lianqin Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiuling Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Rui Guo
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yangyang Cai
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanan Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|