1
|
Huo Q, Li Z, Chen S, Wang J, Li J, Xie N. VWCE as a potential biomarker associated with immune infiltrates in breast cancer. Cancer Cell Int 2021; 21:272. [PMID: 34020650 PMCID: PMC8140436 DOI: 10.1186/s12935-021-01955-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Von Willebrand Factor C and EGF Domains (VWCE) is an important gene that regulates cell adhesion, migration, and interaction. However, the correlation between VWCE expression and immune infiltrating in breast cancer remain unclear. In this study, we investigated the correlation between VWCE expression and immune infiltration levels in breast cancer. METHODS The expression of VWCE was analyzed by the tumor immune estimation resource (TIMER) and DriverDB databases. Furthermore, genes co-expressed with VWCE and gene ontology (GO) enrichment analysis were investigated by the STRING and Enrichr web servers. Also, we performed the single nucleotide variation (SNV), copy number variation (CNV), and pathway activity analysis through GSCALite. Subsequently, the relationship between VWCE expression and tumor immunity was analyzed by TIMER and TISIDB databases, and further verified the results using Quantitative Real-Time PCR (RT-PCR), Western blotting, and immunohistochemistry. RESULTS The results showed that the expression of VWCE mRNA in breast cancer tissue was significantly lower than that in normal tissues. We found that the expression level of VWCE was associated with subtypes, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status of breast cancer patients, but there was no significant difference in the expression of VWCE was found in age and nodal status. Further analyses indicated that VWCE was correlated with the activation or inhibition of multiple oncogenic pathways. Additionally, VWCE expression was negatively correlated with the expression of STAT1 (Th1 marker, r = - 0.12, p = 6e-05), but positively correlated with the expression of MS4A4A (r = 0.28, p = 0). These results suggested that the expression of VWCE was correlated with immune infiltration levels of Th1 and M2 macrophage in breast cancer. CONCLUSIONS In our study, VWCE expression was associated with a better prognosis and was immune infiltration in breast cancer. These findings demonstrate that VWCE is a potential prognostic biomarker and correlated with tumor immune cell infiltration, and maybe a promising therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Qin Huo
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University , Shenzhen, 518035, China
| | - Zhenwei Li
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University , Shenzhen, 518035, China
| | - Siqi Chen
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University , Shenzhen, 518035, China
| | - Juan Wang
- Department of Clinical Medicine , University of South China , Hengyang , 421001 , China
| | - Jiaying Li
- Department of Clinical Medicine , University of South China , Hengyang , 421001 , China
| | - Ni Xie
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University , Shenzhen, 518035, China.
| |
Collapse
|
2
|
SOX9 promotes nasopharyngeal carcinoma cell proliferation, migration and invasion through BMP2 and mTOR signaling. Gene 2019; 715:144017. [PMID: 31357026 DOI: 10.1016/j.gene.2019.144017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
SRY-related high-mobility-group box 9 (SOX9) is a member of the SOX family of transcription factors. Accumulating evidence has shown that SOX9 plays a significant role in various malignancies. However, the role of SOX9 in nasopharyngeal carcinoma (NPC) remains unknown. In the present study, up-regulation of SOX9 was observed in both NPC tissues and different NPC cells. Overexpression of SOX9 promoted NPC cell proliferation, migration and invasion. Conversely, knock down of SOX9 inhibited NPC proliferation, colony formation, migration and invasion. Mechanistically, SOX9 bound directly to the promoter region of BMP2 and increased BMP2 expression. In addition, overexpression of SOX9 activated the mTOR pathway partly through BMP2. Collectively, these results identify a novel role for SOX9 as a potential therapeutic marker for the prevention and treatment of NPC.
Collapse
|
3
|
A case of acute myeloid leukemia with promyelocytic features characterized by expression of a novel RARG- CPSF6 fusion. Blood Adv 2019; 2:1295-1299. [PMID: 29891591 DOI: 10.1182/bloodadvances.2017014183] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/13/2018] [Indexed: 12/18/2022] Open
Abstract
Key Points
Novel RARG-CPSF6 fusion in an AML case with promyelocytic features and no evidence of PML-RARA or X-RARA fusion. Gene fusions involving RARG can initiate AML with promyelocytic morphological features.
Collapse
|
4
|
Wang MH, Zhou XM, Zhang MY, Shi L, Xiao RW, Zeng LS, Yang XZ, Zheng XFS, Wang HY, Mai SJ. BMP2 promotes proliferation and invasion of nasopharyngeal carcinoma cells via mTORC1 pathway. Aging (Albany NY) 2018; 9:1326-1340. [PMID: 28455969 PMCID: PMC5425130 DOI: 10.18632/aging.101230] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic protein-2 (BMP2) is a secreted protein that highly expressed in a variety of cancers and contributes to cell proliferation, migration, invasiveness, mobility, metastasis and EMT. However, its clinical significance and biological function in nasopharyngeal carcinoma (NPC) remain unknown up to now. Up-regulation of BMP2 was first observed in NPC cell lines by a genome-wide transcriptome analysis in our previous study. In this study, BMP2 mRNA was detected by qRT-PCR and data showed that it was upregulated in NPC compared with non-cancerous nasopharynx samples. Immunohistochemistry (IHC) analysis in NPC specimens revealed that high BMP2 expression was significantly associated with clinical stage, distant metastasis and shorter survival of NPC patients. Moreover, overexpression of BMP2 in NPC cells promoted cell proliferation, migration, invasiveness and epithelial-mesenchymal transition (EMT). Mechanistically, BMP2 overexpression increase phosphorylated protein level of mTOR, S6K and 4EBP1. Correspondingly, mTORC1 inhibitor rapamycin blocked the effect of BMP2 on NPC cell proliferation and invasion. In conclusion, our results suggest that BMP2 overexpression in NPC enhances proliferation, invasion and EMT of tumor cells through the mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Meng-He Wang
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiao-Min Zhou
- Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lu Shi
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Si Zeng
- Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Xian-Zi Yang
- Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - X F Steven Zheng
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|
5
|
Clifford HW, Cassidy AP, Vaughn C, Tsai ES, Seres B, Patel N, O'Neill HL, Hewage E, Cassidy JW. Profiling lung adenocarcinoma by liquid biopsy: can one size fit all? Cancer Nanotechnol 2016; 7:10. [PMID: 27933110 PMCID: PMC5119837 DOI: 10.1186/s12645-016-0023-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/08/2016] [Indexed: 11/10/2022] Open
Abstract
Background Cancer is first and foremost a disease of the genome. Specific genetic signatures within a tumour are prognostic of disease outcome, reflect subclonal architecture and intratumour heterogeneity, inform treatment choices and predict the emergence of resistance to targeted therapies. Minimally invasive liquid biopsies can give temporal resolution to a tumour’s genetic profile and allow the monitoring of treatment response through levels of circulating tumour DNA (ctDNA). However, the detection of ctDNA in repeated liquid biopsies is currently limited by economic and time constraints associated with targeted sequencing. Methods Here we bioinformatically profile the mutational and copy number spectrum of The Cancer Genome Network’s lung adenocarcinoma dataset to uncover recurrently mutated genomic loci. Results We build a panel of 400 hotspot mutations and show that the coverage extends to more than 80% of the dataset at a median depth of 8 mutations per patient. Additionally, we uncover several novel single-nucleotide variants present in more than 5% of patients, often in genes not commonly associated with lung adenocarcinoma. Conclusion With further optimisation, this hotspot panel could allow molecular diagnostics laboratories to build curated primer banks for ‘off-the-shelf’ monitoring of ctDNA by droplet-based digital PCR or similar techniques, in a time- and cost-effective manner.
Collapse
Affiliation(s)
- Harry W Clifford
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,St. Edmund Hall, University of Oxford, Queen's Lane, Oxford, UK
| | - Amy P Cassidy
- NHS Greater Glasgow and Clyde, University of Glasgow, Glasgow, UK
| | - Courtney Vaughn
- UNC School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Evaline S Tsai
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,Peterhouse, University of Cambridge, Trumpington Street, Cambridge, UK
| | - Bianka Seres
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nirmesh Patel
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,Division of Cancer Studies, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | - Emil Hewage
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK
| | - John W Cassidy
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,Queens' College, University of Cambridge, Silver Street, Cambridge, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Loomans HA, Andl CD. Activin receptor-like kinases: a diverse family playing an important role in cancer. Am J Cancer Res 2016; 6:2431-2447. [PMID: 27904762 PMCID: PMC5126264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023] Open
Abstract
The role and function of the members of the TGFβ superfamily has been a substantial area of research focus for the last several decades. During that time, it has become apparent that aberrations in TGFβ family signaling, whether through the BMP, Activin, or TGFβ arms of the pathway, can result in tumorigenesis or contribute to its progression. Downstream signaling regulates cellular growth under normal physiological conditions yet induces diverse processes during carcinogenesis, ranging from epithelial- to-mesenchymal transition to cell migration and invasion to angiogenesis. Due to these observations, the question has been raised how to utilize and target components of these signaling pathways in cancer therapy. Given that these cascades include both ligands and receptors, there are multiple levels at which to interfere. Activin receptor-like kinases (ALKs) are a group of seven type I receptors responsible for TGFβ family signal transduction and are utilized by many ligands within the superfamily. The challenge lies in specifically targeting the often-overlapping functional effects of BMP, Activin, or TGFβ signaling during cancer progression. This review focuses on the characteristic function of the individual receptors within each subfamily and their recognized roles in cancer. We next explore the clinical utility of therapeutically targeting ALKs as some have shown partial responses in Phase I clinical trials but disappointing outcomes when used in Phase II studies. Finally, we discuss the challenges and future directions of this body of work.
Collapse
Affiliation(s)
- Holli A Loomans
- Department of Cancer Biology, Vanderbilt UniversityNashville, TN, USA
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA
| |
Collapse
|