1
|
Řezáč M, Řezáčová V, Gloríková N, Némethová E, Heneberg P. Food provisioning to Pardosa spiders decreases the levels of tissue-resident endosymbiotic bacteria. Sci Rep 2023; 13:6943. [PMID: 37117271 PMCID: PMC10147729 DOI: 10.1038/s41598-023-34229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/26/2023] [Indexed: 04/30/2023] Open
Abstract
The diversity, host specificity, and physiological effects of endosymbiotic bacteria in spiders (Araneae) are poorly characterized. We used 16S rDNA sequencing to evaluate endosymbionts in the cephalothorax and legs of a wolf spider Pardosa agrestis. We tested the effects of feeding once or twice daily with fruit flies, aphids, or starved and compared them to those of syntopically occurring Pardosa palustris. The feeding increased traveled distance up to five times in some of the groups provisioned with food relative to the starved control. The Shannon diversity t-test revealed significant differences between these component communities of the two spider species. The increased frequency of feeding with fruit flies, but not aphids, increased the dominance and decreased the alpha diversity of OTUs. The obligate or facultative endosymbionts were present in all analyzed spider individuals and were represented mostly by Rickettsiella, Rhabdochlamydia, Spiroplasma, and the facultative intracellular parasite Legionella. Vertically transmitted endosymbionts were less common, represented by Wolbachia pipientis and Rickettsia sp. H820. The relative abundance of Mycoplasma spp. was negatively correlated with provisioned or killed aphids. In conclusion, the tissues of Pardosa spiders host tremendously diverse assemblages of bacteria, including obligate or facultative endosymbionts, with yet unknown phenotypic effects.
Collapse
Affiliation(s)
- Milan Řezáč
- Crop Research Institute, Drnovská 507, 160 00, Prague, Czech Republic
| | - Veronika Řezáčová
- Crop Research Institute, Drnovská 507, 160 00, Prague, Czech Republic.
| | - Nela Gloríková
- Crop Research Institute, Drnovská 507, 160 00, Prague, Czech Republic
| | - Ema Némethová
- Crop Research Institute, Drnovská 507, 160 00, Prague, Czech Republic
| | - Petr Heneberg
- Crop Research Institute, Drnovská 507, 160 00, Prague, Czech Republic.
- Charles University, Third Faculty of Medicine, Ruská 87, 100 00, Prague, Czech Republic.
| |
Collapse
|
2
|
Nasonia-microbiome associations: a model for evolutionary hologenomics research. Trends Parasitol 2023; 39:101-112. [PMID: 36496327 DOI: 10.1016/j.pt.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
In recent years, with the development of microbial research technologies, microbiota research has received widespread attention. The parasitoid wasp genus Nasonia is a good model organism for studying insect behavior, development, evolutionary genetics, speciation, and symbiosis. This review describes key advances and progress in the field of the Nasonia-microbiome interactions. We provide an overview of the advantages of Nasonia as a model organism for microbiome studies, list research methods to study the Nasonia microbiome, and discuss recent discoveries in Nasonia microbiome research. This summary of the complexities of Nasonia-microbiome relationships will help to contribute to a better understanding of the interactions between animals and their microbiomes and establish a clear research direction for Nasonia-microbiome interactions in the future.
Collapse
|
3
|
Bell K, Bordenstein SR. A Margulian View of Symbiosis and Speciation: the Nasonia Wasp System. Symbiosis 2022. [DOI: 10.1007/s13199-022-00843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractSpecies are fundamental units of biology that exemplify lineage diversification, while symbiosis of microbes and macrobial hosts exemplify lineage unification between the domains of life. While these conceptual differences between speciation and symbiosis often dominate the narrative of the respective fields, Lynn Margulis argued for interconnection between these two subdisciplines of biology in a manner that left a legacy for scholars and students alike to pursue, detail, and discover. The Margulian perspective has always been that host evolutionary processes such as speciation are more impacted by microbial symbioses than typically appreciated. In this article, we present and review the case system that she long envisioned, one in which layers of microbial symbiosis reduce species interbreeding and assist species diversification among a closely related group of small, metallic green, parasitoid wasps from the genus Nasonia.
Collapse
|
4
|
Genome of the parasitoid wasp Cotesia chilonis sheds light on amino acid resource exploitation. BMC Biol 2022; 20:118. [PMID: 35606775 PMCID: PMC9128236 DOI: 10.1186/s12915-022-01313-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background A fundamental feature of parasitism is the nutritional exploitation of host organisms by their parasites. Parasitoid wasps lay eggs on arthropod hosts, exploiting them for nutrition to support larval development by using diverse effectors aimed at regulating host metabolism. However, the genetic components and molecular mechanisms at the basis of such exploitation, especially the utilization of host amino acid resources, remain largely unknown. To address this question, here, we present a chromosome-level genome assembly of the parasitoid wasp Cotesia chilonis and reconstruct its amino acid biosynthetic pathway. Results Analyses of the amino acid synthetic pathway indicate that C. chilonis lost the ability to synthesize ten amino acids, which was confirmed by feeding experiments with amino acid-depleted media. Of the ten pathways, nine are known to have been lost in the common ancestor of animals. We find that the ability to synthesize arginine was also lost in C. chilonis because of the absence of two key genes in the arginine synthesis pathway. Further analyses of the genomes of 72 arthropods species show that the loss of arginine synthesis is common in arthropods. Metabolomic analyses by UPLC-MS/MS reveal that the temporal concentrations of arginine, serine, tyrosine, and alanine are significantly higher in host (Chilo suppressalis) hemolymph at 3 days after parasitism, whereas the temporal levels of 5-hydroxylysine, glutamic acid, methionine, and lysine are significantly lower. We sequence the transcriptomes of a parasitized host and non-parasitized control. Differential gene expression analyses using these transcriptomes indicate that parasitoid wasps inhibit amino acid utilization and activate protein degradation in the host, likely resulting in the increase of amino acid content in host hemolymph. Conclusions We sequenced the genome of a parasitoid wasp, C. chilonis, and revealed the features of trait loss in amino acid biosynthesis. Our work provides new insights into amino acid exploitation by parasitoid wasps, and this knowledge can specifically be used to design parasitoid artificial diets that potentially benefit mass rearing of parasitoids for pest control. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01313-3.
Collapse
|
5
|
Pei Y, Zhao S, Chen X, Zhang J, Ni H, Sun M, Lin H, Liu X, Chen H, Yang S. Bacillus velezensis EEAM 10B Strengthens Nutrient Metabolic Process in Black Soldier Fly Larvae (Hermetia illucens) via Changing Gut Microbiome and Metabolic Pathways. Front Nutr 2022; 9:880488. [PMID: 35662952 PMCID: PMC9161358 DOI: 10.3389/fnut.2022.880488] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Insects are a potential alternative protein source to solve the food shortage crisis. Previous studies have illustrated that probiotics can improve the substrate conversion efficiency of insects and increase insect protein content. However, the effects of probiotics on insect physiology and nutrient metabolism are still not well understood. Here, the black soldier fly larvae (BSFL), Hermetia illucens (Diptera: Stratiomyidae), was used as a study subject to deeply investigate the specific interaction among a novel probiotic, Bacillus velezensis EEAM 10B (10B), intestinal microbiota, and the host. In this study, the effects of 10B on the survival and physiology of BSFL were first analyzed. It shows that 10B significantly elevated the substrate conversion rate, average dry weight, and protein content of BSFL by 5%, 0.13 g/pc, and 8%, respectively. Then, we assessed the effect of 10B on the microbial community composition in the gut and frass of BSFL using Illumina Miseq sequencing. It shows that 10B significantly altered the microbial composition of the gut, but not that of the frass. Pearson’s correlation analysis further showed that the Bacillus, unclassified_of_Caloramatoraceae, and Gracilibacillus were positively correlated with the survival rate, crude protein content, and substrate conversion rate of BSFL. To further investigate the effect of 10B on host metabolism, metabolic analyses on germ-free BSFL, monobacterial intestinal BSFL, and natural BSFL were also performed. The results proved that 10B (i) played a vital role in the survival of BSFL; and (ii) regulated the amino acid synthetic and metabolic process of BSFL, thus leading to the rise of the protein content of BSFL. In addition, vitamin backfill assays verified that the BSFL survival rate was significantly improved by supplying the germ-free BSFL with riboflavin, which further suggests that 10B determines the survival of BSFL via delivering riboflavin. Overall, this study provides a reference for understanding the comprehensive contribution of a specific probiotic to its host.
Collapse
Affiliation(s)
- Yaxin Pei
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Sijie Zhao
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Xiang Chen
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Jiran Zhang
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mengxiao Sun
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Hui Lin
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Xinyu Liu
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Hongge Chen
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
| | - Sen Yang
- Department of Microbiology, School of Life Sciences, Henan Agricultural University, Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), Zhengzhou, China
- *Correspondence: Sen Yang,
| |
Collapse
|
6
|
Wang GH, Brucker RM. An optimized method for Nasonia germ-free rearing. Sci Rep 2022; 12:219. [PMID: 34997157 PMCID: PMC8741784 DOI: 10.1038/s41598-021-04363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
A germ-free rearing system is a crucial method for host–microbiota interactions using Nasonia as a model system. The previous rearing media in 2012 introduced toxic factors like bleach and antibiotics, required significant effort and volume of media preparation, and the rearing protocols in 2012 and 2016 often resulted in embryos, larvae, and enclosing pupae drowning, underfed, or desiccating. In this work, we optimize the germ-free rearing media that excludes the toxic factors and provide a substrate for the developing animals to have constant access to media without the risk of drowning or desiccation. The new process resulted in an increase in full maturation of larvae to adults from 33 to 65%, with no effect on the rate of growth or final adult size. This significantly improves the applicability of germ-free rearing of Nasonia and potentially other parasitoids.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Rowland Institute at Harvard University, Cambridge, MA, 02142, USA.
| | - Robert M Brucker
- Rowland Institute at Harvard University, Cambridge, MA, 02142, USA.
| |
Collapse
|
7
|
Dittmer J, Brucker RM. When your host shuts down: larval diapause impacts host-microbiome interactions in Nasonia vitripennis. MICROBIOME 2021; 9:85. [PMID: 33836829 PMCID: PMC8035746 DOI: 10.1186/s40168-021-01037-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND The life cycles of many insect species include an obligatory or facultative diapause stage with arrested development and low metabolic activity as an overwintering strategy. Diapause is characterised by profound physiological changes in endocrine activity, cell proliferation and nutrient metabolism. However, little is known regarding host-microbiome interactions during diapause, despite the importance of bacterial symbionts for host nutrition and development. In this work, we investigated (i) the role of the microbiome for host nutrient allocation during diapause and (ii) the impact of larval diapause on microbiome dynamics in the parasitoid wasp Nasonia vitripennis, a model organism for host-microbiome interactions. RESULTS Our results demonstrate that the microbiome is essential for host nutrient allocation during diapause in N. vitripennis, as axenic diapausing larvae had consistently lower glucose and glycerol levels than conventional diapausing larvae, especially when exposed to cold temperature. In turn, microbiome composition was altered in diapausing larvae, potentially due to changes in the surrounding temperature, host nutrient levels and a downregulation of host immune genes. Importantly, prolonged larval diapause had a transstadial effect on the adult microbiome, with unknown consequences for host fitness. Notably, the most dominant microbiome member, Providencia sp., was drastically reduced in adults after more than 4 months of larval diapause, while potential bacterial pathogens increased in abundance. CONCLUSION This work investigates host-microbiome interactions during a crucial developmental stage, which challenges both the insect host and its microbial associates. The impact of diapause on the microbiome is likely due to several factors, including altered host regulatory mechanisms and changes in the host environment. Video Abstract.
Collapse
Affiliation(s)
- Jessica Dittmer
- The Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA.
- Present Address: Dipartimento di Scienze agrarie e ambientali (DISAA), Università degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
| | - Robert M Brucker
- The Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA.
| |
Collapse
|
8
|
Genomes of Gut Bacteria from Nasonia Wasps Shed Light on Phylosymbiosis and Microbe-Assisted Hybrid Breakdown. mSystems 2021; 6:6/2/e01342-20. [PMID: 33824199 PMCID: PMC8547009 DOI: 10.1128/msystems.01342-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Phylosymbiosis is a cross-system trend whereby microbial community relationships recapitulate the host phylogeny. In Nasonia parasitoid wasps, phylosymbiosis occurs throughout development, is distinguishable between sexes, and benefits host development and survival. Moreover, the microbiome shifts in hybrids as a rare Proteus bacterium in the microbiome becomes dominant. The larval hybrids then catastrophically succumb to bacterium-assisted lethality and reproductive isolation between the species. Two important questions for understanding phylosymbiosis and bacterium-assisted lethality in hybrids are (i) do the Nasonia bacterial genomes differ from other animal isolates and (ii) are the hybrid bacterial genomes the same as those in the parental species? Here, we report the cultivation, whole-genome sequencing, and comparative analyses of the most abundant gut bacteria in Nasonia larvae, Providencia rettgeri and Proteus mirabilis. Characterization of new isolates shows Proteus mirabilis forms a more robust biofilm than Providencia rettgeri and that, when grown in coculture, Proteus mirabilis significantly outcompetes Providencia rettgeri. Providencia rettgeri genomes from Nasonia are similar to each other and more divergent from pathogenic, human associates. Proteus mirabilis from Nasonia vitripennis, Nasonia giraulti, and their hybrid offspring are nearly identical and relatively distinct from human isolates. These results indicate that members of the larval gut microbiome within Nasonia are most similar to each other, and the strain of the dominant Proteus mirabilis in hybrids is resident in parental species. Holobiont interactions between shared, resident members of the wasp microbiome and the host underpin phylosymbiosis and hybrid breakdown. IMPORTANCE Animal and plant hosts often establish intimate relationships with their microbiomes. In varied environments, closely related host species share more similar microbiomes, a pattern termed phylosymbiosis. When phylosymbiosis is functionally significant and beneficial, microbial transplants between host species and host hybridization can have detrimental consequences on host biology. In the Nasonia parasitoid wasp genus, which contains a phylosymbiotic gut community, both effects occur and provide evidence for selective pressures on the holobiont. Here, we show that bacterial genomes in Nasonia differ from other environments and harbor genes with unique functions that may regulate phylosymbiotic relationships. Furthermore, the bacteria in hybrids are identical to those in parental species, thus supporting a hologenomic tenet that the same members of the microbiome and the host genome impact phylosymbiosis, hybrid breakdown, and speciation.
Collapse
|
9
|
Ye X, Xiong S, Teng Z, Yang Y, Wang J, Yu K, Wu H, Mei Y, Yan Z, Cheng S, Yin C, Wang F, Yao H, Fang Q, Song Q, Werren JH, Ye G, Li F. Amino acid synthesis loss in parasitoid wasps and other hymenopterans. eLife 2020; 9:e59795. [PMID: 33074103 PMCID: PMC7593089 DOI: 10.7554/elife.59795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 11/17/2022] Open
Abstract
Insects utilize diverse food resources which can affect the evolution of their genomic repertoire, including leading to gene losses in different nutrient pathways. Here, we investigate gene loss in amino acid synthesis pathways, with special attention to hymenopterans and parasitoid wasps. Using comparative genomics, we find that synthesis capability for tryptophan, phenylalanine, tyrosine, and histidine was lost in holometabolous insects prior to hymenopteran divergence, while valine, leucine, and isoleucine were lost in the common ancestor of Hymenoptera. Subsequently, multiple loss events of lysine synthesis occurred independently in the Parasitoida and Aculeata. Experiments in the parasitoid Cotesia chilonis confirm that it has lost the ability to synthesize eight amino acids. Our findings provide insights into amino acid synthesis evolution, and specifically can be used to inform the design of parasitoid artificial diets for pest control.
Collapse
Affiliation(s)
- Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
- Department of Biology, University of RochesterRochesterUnited States
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Ziwen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yi Yang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Kaili Yu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Huizi Wu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Sammy Cheng
- Department of Biology, University of RochesterRochesterUnited States
| | - Chuanlin Yin
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of MissouriColumbiaUnited States
| | - John H Werren
- Department of Biology, University of RochesterRochesterUnited States
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
10
|
Kohl KD. Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190251. [PMID: 32200746 PMCID: PMC7133527 DOI: 10.1098/rstb.2019.0251] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Phylosymbiosis, where similarities in host-associated microbial communities recapitulate the phylogeny of their hosts, is a newly recognized yet pervasive pattern in the field of host-microbe interactions. While phylosymbiosis has been documented across many systems, we still have a poor understanding of the mechanisms that underlie this emergent pattern. Host selection of the microbiome is a widely cited mechanism, yet other basic ecological and evolutionary processes (dispersal, drift and diversification) may also be at play. This paper discusses the roles that each of these processes and their interactions may play in yielding phylosymbiotic signals across hosts. Finally, this paper will identify open questions and methods that are required to better understand the relative contributions of these basic processes to phylosymbiosis. Given that phylosymbiosis has been shown to relate to functional components of host fitness, understanding the processes that contribute to these patterns will be important for our understanding of the ecology and evolution of host-microbe interactions. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Kevin D. Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
11
|
Abstract
Phylosymbiosis is defined as microbial community relationships that recapitulate the phylogeny of hosts. As evidence for phylosymbiosis rapidly accumulates in different vertebrate and invertebrate holobionts, a central question is what evolutionary forces cause this pattern. We use intra- and interspecific gut microbiota transplants to test for evidence of selective pressures that contribute to phylosymbiosis. We leverage three closely related species of the parasitoid wasp model Nasonia that recently diverged between 0.4 and 1 million years ago: N. vitripennis, N. giraulti, and N. longicornis Upon exposure of germfree larvae to heat-inactivated microbiota from intra- or interspecific larvae, we measure larval growth, pupation rate, and adult reproductive capacity. We report three key findings: (i) larval growth significantly slows when hosts receive an interspecific versus intraspecific gut microbiota, (ii) marked decreases in pupation and resulting adult survival occur from interspecific gut microbiota exposure, and (iii) adult reproductive capacities including male fertility and longevity are unaffected by early life exposure to an interspecific microbiota. Overall, these findings reveal developmental and survival costs to Nasonia upon larval exposures to interspecific microbiota and provide evidence that selective pressures on phenotypes produced by host-microbiota interactions may underpin phylosymbiosis.IMPORTANCE Phylosymbiosis is an ecoevolutionary hypothesis and emerging pattern in animal-microbiota studies whereby the host phylogenetic relationships parallel the community relationships of the host-associated microbiota. A central prediction of phylosymbiosis is that closely related hosts exhibit a lower microbiota beta diversity than distantly related hosts. While phylosymbiosis has emerged as a widespread trend in a field often challenged to find trends across systems, two critical and understudied questions are whether or not phylosymbiosis is consequential to host biology and if adaptive evolutionary forces underpin the pattern. Here, using germfree rearing in the phylosymbiosis model Nasonia, we demonstrate that early life exposure to heat-inactivated microbiota from more distantly related species poses more severe developmental and survival costs than microbiota from closely related or the same species. This study advances a functional understanding of the consequences and potential selective pressures underpinning phylosymbiosis.
Collapse
|
12
|
Nadal-Jimenez P, Griffin JS, Davies L, Frost CL, Marcello M, Hurst GDD. Genetic manipulation allows in vivo tracking of the life cycle of the son-killer symbiont, Arsenophonus nasoniae, and reveals patterns of host invasion, tropism and pathology. Environ Microbiol 2019; 21:3172-3182. [PMID: 31237728 PMCID: PMC6771839 DOI: 10.1111/1462-2920.14724] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022]
Abstract
Maternally heritable symbionts are common in arthropods and represent important partners and antagonists. A major impediment to understanding the mechanistic basis of these symbioses has been lack of genetic manipulation tools, for instance, those enabling transgenic GFP expression systems for in vivo visualization. Here, we transform the ‘son‐killer’ reproductive parasite Arsenophonus nasoniae that infects the parasitic wasp Nasonia vitripennis with the plasmid pOM1‐gfp, re‐introduce this strain to N. vitripennis and then used this system to track symbiont life history in vivo. These data revealed transfer of the symbiont into the fly pupa by N. vitripennis during oviposition and N. vitripennis larvae developing infection over time through feeding. A strong tropism of A. nasoniae to the N. vitripennis ovipositor developed during wasp pupation, which aids onward transmission. The symbiont was also visualized in diapause larvae. Occasional necrotic diapause larvae were observed which displayed intense systemic infection alongside widespread melanotic nodules indicative of an active but failed immune response. Our results provide the foundation for the study of this symbiosis through in vivo tracking of the fate of symbionts through host development, which is rarely achieved in heritable microbe/insect interactions.
Collapse
Affiliation(s)
- Pol Nadal-Jimenez
- Institute for Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joanne S Griffin
- Institute for Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lianne Davies
- Institute for Integrative Biology, University of Liverpool, Liverpool, UK
| | - Crystal L Frost
- Institute for Integrative Biology, University of Liverpool, Liverpool, UK
| | - Marco Marcello
- Institute for Integrative Biology, University of Liverpool, Liverpool, UK
| | - Gregory D D Hurst
- Institute for Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Kohl KD. An Introductory "How-to" Guide for Incorporating Microbiome Research into Integrative and Comparative Biology. Integr Comp Biol 2018; 57:674-681. [PMID: 28985331 DOI: 10.1093/icb/icx013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Research on host-associated microbial communities has grown rapidly. Despite the great body of work, inclusion of microbiota-related questions into integrative and comparative biology is still lagging behind other disciplines. The purpose of this paper is to offer an introduction into the basic tools and techniques of host-microbe research. Specifically, what considerations should be made before embarking on such projects (types of samples, types of controls)? How is microbiome data analyzed and integrated with data measured from the hosts? How can researchers experimentally manipulate the microbiome? With this information, integrative and comparative biologists should be able to include host-microbe studies into their research and push the boundaries of both fields.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
14
|
Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. PLoS Biol 2016; 14:e2000225. [PMID: 27861590 PMCID: PMC5115861 DOI: 10.1371/journal.pbio.2000225] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023] Open
Abstract
Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern, whereby the ecological relatedness of host-associated microbial communities parallels the phylogeny of related host species. Here, we test the prevalence of phylosymbiosis and its functional significance under highly controlled conditions by characterizing the microbiota of 24 animal species from four different groups (Peromyscus deer mice, Drosophila flies, mosquitoes, and Nasonia wasps), and we reevaluate the phylosymbiotic relationships of seven species of wild hominids. We demonstrate three key findings. First, intraspecific microbiota variation is consistently less than interspecific microbiota variation, and microbiota-based models predict host species origin with high accuracy across the dataset. Interestingly, the age of host clade divergence positively associates with the degree of microbial community distinguishability between species within the host clades, spanning recent host speciation events (~1 million y ago) to more distantly related host genera (~108 million y ago). Second, topological congruence analyses of each group's complete phylogeny and microbiota dendrogram reveal significant degrees of phylosymbiosis, irrespective of host clade age or taxonomy. Third, consistent with selection on host–microbiota interactions driving phylosymbiosis, there are survival and performance reductions when interspecific microbiota transplants are conducted between closely related and divergent host species pairs. Overall, these findings indicate that the composition and functional effects of an animal's microbial community can be closely allied with host evolution, even across wide-ranging timescales and diverse animal systems reared under controlled conditions. Studies on the assembly and function of host-microbiota symbioses are inherently complicated by the diverse effects of diet, age, sex, host genetics, and endosymbionts. Central to unraveling one effect from the other is an experimental framework that reduces confounders. Using common rearing conditions across four animal groups (deer mice, flies, mosquitoes, and wasps) that span recent host speciation events to more distantly related host genera, this study tests whether microbial community assembly is generally random with respect to host relatedness or "phylosymbiotic," in which the phylogeny of the host group is congruent with ecological relationships of their microbial communities. Across all four animal groups and one external dataset of great apes, we apply several statistics for analyzing congruencies and demonstrate phylosymbiosis to varying degrees in each group. Moreover, consistent with selection on host–microbiota interactions driving phylosymbiosis, transplanting interspecific microbial communities in mice significantly decreased their ability to digest food. Similarly, wasps that received transplants of microbial communities from different wasp species had lower survival than those given their own microbiota. Overall, this experimental and statistical framework shows how microbial community assembly and functionality across related species can be linked to animal evolution, health, and survival.
Collapse
Affiliation(s)
- Andrew W. Brooks
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin D. Kohl
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Robert M. Brucker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- The Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts, United States of America
| | - Edward J. van Opstal
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
15
|
Dittmer J, van Opstal EJ, Shropshire JD, Bordenstein SR, Hurst GDD, Brucker RM. Disentangling a Holobiont - Recent Advances and Perspectives in Nasonia Wasps. Front Microbiol 2016; 7:1478. [PMID: 27721807 PMCID: PMC5033955 DOI: 10.3389/fmicb.2016.01478] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022] Open
Abstract
The parasitoid wasp genus Nasonia (Hymenoptera: Chalcidoidea) is a well-established model organism for insect development, evolutionary genetics, speciation, and symbiosis. The host-microbiota assemblage which constitutes the Nasonia holobiont (a host together with all of its associated microbes) consists of viruses, two heritable bacterial symbionts and a bacterial community dominated in abundance by a few taxa in the gut. In the wild, all four Nasonia species are systematically infected with the obligate intracellular bacterium Wolbachia and can additionally be co-infected with Arsenophonus nasoniae. These two reproductive parasites have different transmission modes and host manipulations (cytoplasmic incompatibility vs. male-killing, respectively). Pioneering studies on Wolbachia in Nasonia demonstrated that closely related Nasonia species harbor multiple and mutually incompatible Wolbachia strains, resulting in strong symbiont-mediated reproductive barriers that evolved early in the speciation process. Moreover, research on host-symbiont interactions and speciation has recently broadened from its historical focus on heritable symbionts to the entire microbial community. In this context, each Nasonia species hosts a distinguishable community of gut bacteria that experiences a temporal succession during host development and members of this bacterial community cause strong hybrid lethality during larval development. In this review, we present the Nasonia species complex as a model system to experimentally investigate questions regarding: (i) the impact of different microbes, including (but not limited to) heritable endosymbionts, on the extended phenotype of the holobiont, (ii) the establishment and regulation of a species-specific microbiota, (iii) the role of the microbiota in speciation, and (iv) the resilience and adaptability of the microbiota in wild populations subjected to different environmental pressures. We discuss the potential for easy microbiota manipulations in Nasonia as a promising experimental approach to address these fundamental aspects.
Collapse
Affiliation(s)
- Jessica Dittmer
- Rowland Institute at Harvard, Harvard University, Cambridge MA, USA
| | | | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, NashvilleTN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, NashvilleTN, USA
| | - Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Robert M Brucker
- Rowland Institute at Harvard, Harvard University, Cambridge MA, USA
| |
Collapse
|