1
|
Jacob J, Veras I, Calderόn O, Porter-Morgan HA, Tan J, Aguilar HE, Elkins WT, Martinez Castro VP, Fulton V, Yousri WK. Possibly pathogenic bacteria in aerosols and foams as a result of aeration remediation in a polluted urban waterway. Folia Microbiol (Praha) 2024; 69:235-246. [PMID: 37777646 PMCID: PMC10876779 DOI: 10.1007/s12223-023-01096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Newtown Creek is a tributary of the Hudson River Estuary. It has a legacy of both industrial pollution and sewage pollution and has been designated a Superfund site. To ameliorate the chronically low levels of dissolved oxygen detected in the Creek, the New York City Department of Environmental Protection has been installing aerators. The abundance of various bacteria in the aerosols, foams, and water, at two sites in the Creek, was studied before, during, and after the aeration process. Additionally, aerosols and dispersed foams created by the aeration process were sampled and cultured to determine what unique taxa of bacteria could be grown and identified. Taxa including Actinobacteria and Firmicutes were prevalent in cultures taken from aerosols, whereas Gammaproteobacteria were prevalent in cultures taken from foam. Campylobacteria was found to have a significant presence in both samples taken after the aerators were turned off. These taxa include potentially pathogenic bacteria and are therefore of particular concern.
Collapse
Affiliation(s)
- Joby Jacob
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA.
| | - Ingrid Veras
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Olga Calderόn
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Holly A Porter-Morgan
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Joshua Tan
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Harry E Aguilar
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | | | - Veronica P Martinez Castro
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Vania Fulton
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Wesam K Yousri
- Natural Sciences Department, LaGuardia Community College, City University of New York, Long Island City, NY, USA
| |
Collapse
|
2
|
Kim YJ, Lee BG, Shim JE, Lee H, Park JH, Yeo MK. Airborne bacteria in institutional and commercial buildings in Korea: characterization with 16S rRNA gene sequencing and association with environmental conditions. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2024; 58:1281-1292. [PMID: 40125263 PMCID: PMC11926998 DOI: 10.1080/02786826.2024.2387135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/05/2024] [Indexed: 03/25/2025]
Abstract
Information on microorganisms in indoor air of various institutional and commercial buildings has significant value in a public health management perspective. However, there is a lack of prior research comparing indoor airborne microbiota across different categories of those buildings. We characterized indoor airborne bacteria in 10 buildings (two for each of five categories: train station, parking garage, mart, public library, and daycare center) during summer and winter. The 16S rRNA gene in the bacterial gDNA extracted from samples was quantified using quantitative real-time polymerase chain reaction and sequenced with the Illumina MiSeq™ platform for characterizing community composition. We collected information on temperature, relative humidity, CO2 concentration, and particulate matter (PM) concentrations by particle size (<1μm, 1-2.5μm, 2.5-10μm) indoors. We performed a multivariate regression analysis to identify factors influencing bacterial quantity and Permutational Multivariate Analysis of Variance (PERMANOVA) to determine factors affecting cluster dissimilarity. We found that bacterial concentration was significantly (p-values < 0.05) associated with season and CO2 concentration. The PERMANOVA analyses showed the significant (p-values < 0.05) associations of bacterial cluster dissimilarity with season, building category, and CO2. Our study indicated that the season, and CO2 concentrations may be important factors associated with the indoor airborne bacterial concentration and composition. Building category and usage appeared to significantly influence the bacterial community composition but not the concentration. Our study may provide basic data on bacterial community composition and their concentration that are needed for properly managing microbial exposures in occupants or customers of the studied institutional and commercial buildings.
Collapse
Affiliation(s)
- Yea Joon Kim
- Department of Environmental Science and Engineering, Kyung Hee University, Youngin, Republic of Korea
| | - Bong Gu Lee
- Department of Environmental Science and Engineering, Kyung Hee University, Youngin, Republic of Korea
| | - Joo Eun Shim
- Department of Environmental Science and Engineering, Kyung Hee University, Youngin, Republic of Korea
| | - Hyesoo Lee
- Department of Environmental Science and Engineering, Kyung Hee University, Youngin, Republic of Korea
| | - Ju-Hyeong Park
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Min-Kyeong Yeo
- Department of Environmental Science and Engineering, Kyung Hee University, Youngin, Republic of Korea
| |
Collapse
|
3
|
Blanford WJ, O'Mullan GD. Evaluation of a novel porous antimicrobial media for industrial and HVAC water biocontrol. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2457-2473. [PMID: 37257103 PMCID: wst_2023_076 DOI: 10.2166/wst.2023.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel treatment method, consisting of pea-gravel with a marine coating supplemented with alkyldimethylbenzylammonium chloride (ADBAC or benzalkonium chloride), has been examined for its antimicrobial performance and coating stability in aqueous environments. Initial column studies examining the porous media's ability to reduce bacterial loads in heating, ventilation, and air conditioning (HVAC) water found average reductions of 94% from pre-flush levels (106 colony forming unit (CFU)/mL) when assessed with R2A spread plates and 83% reductions with SimPlates. There was no observed statistical difference between the average of pre- and post-flush waters from four tests of the media without ADBAC. Taxonomic identification, by 16S rRNA gene sequencing, of colonies drawn from pre- and post-ABDAC R2A plates showed similarities with taxa observed in high frequency from prior cultivation-independent surveys of other cooling tower systems. With this proof of concept, two versions of the media were evaluated for potential coating components released during aqueous exposure. Neither released measurable volatile organic compounds (VOC) components, but one did release bisphenol A and ABDAC compounds. Subsequent column tests of the more durable coating were conducted using cultures of interest in industrial water and demonstrated significant reductions in neutralized post-column Enterococcus faecalis samples and near complete loss of Legionella pneumophila in non-neutralized fluids, but lower reductions in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- William James Blanford
- School of Earth and Environmental Science, Queens College, CUNY, 6530 Kissena Boulevard, D202 SB, Flushing, NY 11367, USA E-mail: ;
| | - Gregory D O'Mullan
- School of Earth and Environmental Science, Queens College, CUNY, 6530 Kissena Boulevard, D202 SB, Flushing, NY 11367, USA E-mail: ;
| |
Collapse
|
4
|
Ginn O, Rocha-Melogno L, Bivins A, Lowry S, Cardelino M, Nichols D, Tripathi SN, Soria F, Andrade M, Bergin M, Deshusses MA, Brown J. Detection and Quantification of Enteric Pathogens in Aerosols Near Open Wastewater Canals in Cities with Poor Sanitation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14758-14771. [PMID: 34669386 DOI: 10.1021/acs.est.1c05060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Urban sanitation infrastructure is inadequate in many low-income countries, leading to the presence of highly concentrated, uncontained fecal waste streams in densely populated areas. Combined with mechanisms of aerosolization, airborne transport of enteric microbes and their genetic material is possible in such settings but remains poorly characterized. We detected and quantified enteric pathogen-associated gene targets in aerosol samples near open wastewater canals (OWCs) or impacted (receiving sewage or wastewater) surface waters and control sites in La Paz, Bolivia; Kanpur, India; and Atlanta, USA, via multiplex reverse-transcription qPCR (37 targets) and ddPCR (13 targets). We detected a wide range of enteric targets, some not previously reported in extramural urban aerosols, with more frequent detections of all enteric targets at higher densities in La Paz and Kanpur near OWCs. We report density estimates ranging up to 4.7 × 102 gc per mair3 across all targets including heat-stable enterotoxigenic Escherichia coli, Campylobacter jejuni, enteroinvasive E. coli/Shigella spp., Salmonella spp., norovirus, and Cryptosporidium spp. Estimated 25, 76, and 0% of samples containing positive pathogen detects were accompanied by culturable E. coli in La Paz, Kanpur, and Atlanta, respectively, suggesting potential for viability of enteric microbes at the point of sampling. Airborne transmission of enteric pathogens merits further investigation in cities with poor sanitation.
Collapse
Affiliation(s)
- Olivia Ginn
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, Notre Dame, Indiana 46656, United States
| | - Lucas Rocha-Melogno
- Department of Civil and Environmental Engineering, and Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
- ICF, 2635 Meridian Parkway Suite 200, Durham, North Carolina 27713, United States
| | - Aaron Bivins
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, Notre Dame, Indiana 46656, United States
| | - Sarah Lowry
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Maria Cardelino
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dennis Nichols
- Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Sachchida Nand Tripathi
- Department of Civil Engineering & Centre for Environmental Science and Engineering, Indian Institute of Technology - Kalyanpur, Kanpur 208016, Uttar Pradesh, India
| | - Freddy Soria
- Centro de Investigación en Agua, Energía y Sostenibilidad, Universidad Católica Boliviana "San Pablo", La Paz 4807, Bolivia
| | - Marcos Andrade
- Laboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andres, La Paz 1995, Bolivia
- Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Mike Bergin
- Department of Civil and Environmental Engineering, and Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Marc A Deshusses
- Department of Civil and Environmental Engineering, and Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Joe Brown
- Deparment of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Michalska M, Zorena K, Marks R, Wąż P. The emergency discharge of sewage to the Bay of Gdańsk as a source of bacterial enrichment in coastal air. Sci Rep 2021; 11:20959. [PMID: 34697351 PMCID: PMC8546070 DOI: 10.1038/s41598-021-00390-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/07/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this research was to study the presence of potential pathogenic bacteria in the seawater and air in five coastal towns (Hel, Puck, Gdynia, Sopot, Gdańsk-Brzeźno) as well as the enrichment of bacteria from the seawater into the coastal air after an emergency discharge of sewage into the Bay of Gdańsk. A total of 594 samples of air and seawater were collected in the coastal zone between spring and summer (between 2014 and 2018). Air samples were collected using the impact method with a SAS Super ISO 100. The multivariate analysis, conducted using contingency tables, showed a statistically significant variation between the concentration of coliforms, psychrophilic and mesophilic bacteria in the seawater microlayer and air in 2018, after an emergency discharge of sewage into the Bay of Gdańsk, compared to 2014-2017. Moreover, we detected a marine aerosol enrichment in psychrophilic, mesophilic bacteria, coliforms and Escherichia coli. We also showed a statistically significant relationship between the total concentration of bacteria and humidity, air temperature, speed and wind direction. This increased concentration of bacteria in the seawater and coastal air, and the high factor of air enrichment with bacteria maybe associated with the emergency discharge of wastewater into the Bay of Gdańsk. Therefore, it is suggested that in the event of a malfunction of a sewage treatment plant, as well as after floods or sudden rainfall, the public should be informed about the sanitary and epidemiological status of the coastal waters and be recommended to limit their use of coastal leisure areas.
Collapse
Affiliation(s)
- Małgorzata Michalska
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine Medical University of Gdańsk, ul. Dębinki 7, 80-211, Gdańsk, Poland.
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine Medical University of Gdańsk, ul. Dębinki 7, 80-211, Gdańsk, Poland
| | - Roman Marks
- Institute of Marine and Environmental Sciences, University of Szczecin, ul. Mickiewicza 16, 70-383, Szczecin, Poland
| | - Piotr Wąż
- Department of Nuclear Medicine, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, ul. Dębinki 7, 80-211, Gdańsk, Poland
| |
Collapse
|
6
|
Pendergraft MA, Grimes DJ, Giddings SN, Feddersen F, Beall CM, Lee C, Santander MV, Prather KA. Airborne transmission pathway for coastal water pollution. PeerJ 2021; 9:e11358. [PMID: 34164231 PMCID: PMC8191489 DOI: 10.7717/peerj.11358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Each year, over one hundred million people become ill and tens of thousands die from exposure to viruses and bacteria from sewage transported to the ocean by rivers, estuaries, stormwater, and other coastal discharges. Water activities and seafood consumption have been emphasized as the major exposure pathways to coastal water pollution. In contrast, relatively little is known about the potential for airborne exposure to pollutants and pathogens from contaminated seawater. The Cross Surfzone/Inner-shelf Dye Exchange (CSIDE) study was a large-scale experiment designed to investigate the transport pathways of water pollution along the coast by releasing dye into the surfzone in Imperial Beach, CA. Additionally, we leveraged this ocean-focused study to investigate potential airborne transmission of coastal water pollution by collecting complementary air samples along the coast and inland. Aerial measurements tracked sea surface dye concentrations along 5+ km of coast at 2 m × 2 m resolution. Dye was detected in the air over land for the first 2 days during two of the three dye releases, as far as 668 m inland and 720 m downwind of the ocean. These coordinated water/air measurements, comparing dye concentrations in the air and upwind source waters, provide insights into the factors that lead to the water-to-air transfer of pollutants. These findings show that coastal water pollution can reach people through an airborne pathway and this needs to be taken into account when assessing the full impact of coastal ocean pollution on public health. This study sets the stage for further studies to determine the details and importance of airborne exposure to sewage-based pathogens and toxins in order to fully assess the impact of coastal pollution on public health.
Collapse
Affiliation(s)
- Matthew A Pendergraft
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Derek J Grimes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Sarah N Giddings
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Falk Feddersen
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Charlotte M Beall
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Christopher Lee
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States
| | - Mitchell V Santander
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States
| | - Kimberly A Prather
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
7
|
Theisinger SM, de Smidt O, Lues JFR. Categorisation of culturable bioaerosols in a fruit juice manufacturing facility. PLoS One 2021; 16:e0242969. [PMID: 33882058 PMCID: PMC8059861 DOI: 10.1371/journal.pone.0242969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
Bioaerosols are defined as aerosols that comprise particles of biological origin or activity that may affect living organisms through infectivity, allergenicity, toxicity, or through pharmacological or other processes. Interest in bioaerosol exposure has increased over the last few decades. Exposure to bioaerosols may cause three major problems in the food industry, namely: (i) contamination of food (spoilage); (ii) allergic reactions in individual consumers; or (iii) infection by means of pathogenic microorganisms present in the aerosol. The aim of this study was to characterise the culturable fraction of bioaerosols in the production environment of a fruit juice manufacturing facility and categorise isolates as harmful, innocuous or potentially beneficial to the industry, personnel and environment. Active sampling was used to collect representative samples of five areas in the facility during peak and off-peak seasons. Areas included the entrance, preparation and mixing area, between production lines, bottle dispersion and filling stations. Microbes were isolated and identified using 16S, 26S or ITS amplicon sequencing. High microbial counts and species diversity were detected in the facility. 239 bacteria, 41 yeasts and 43 moulds were isolated from the air in the production environment. Isolates were categorised into three main groups, namely 27 innocuous, 26 useful and 39 harmful bioaerosols. Harmful bioaerosols belonging to the genera Staphylococcus, Pseudomonas, Penicillium and Candida were present. Although innocuous and useful bioaerosols do not negatively influence human health their presence act as an indicator that an ideal environment exists for possible harmful bioaerosols to emerge.
Collapse
Affiliation(s)
- Shirleen M. Theisinger
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Olga de Smidt
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Jan F. R. Lues
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| |
Collapse
|
8
|
Evans SE, Dueker ME, Logan JR, Weathers KC. The biology of fog: results from coastal Maine and Namib Desert reveal common drivers of fog microbial composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1547-1556. [PMID: 30180359 DOI: 10.1016/j.scitotenv.2018.08.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/28/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Fog supplies water and nutrients to systems ranging from coastal forests to inland deserts. Fog droplets can also contain bacterial and fungal aerosols, but our understanding of fog biology is limited. Using metagenomic tools and culturing, we provide a unique look at fungal and bacterial communities in fog at two fog-dominated sites: coastal Maine (USA) and the Namib Desert (Namibia). Microbial communities in the fog at both sites were diverse, distinct from clear aerosols, and influenced by both soil and marine sources. Fog from both sites contained Actinobacteria and Firmicutes, commonly soil- and air-associated phyla, but also contained bacterial taxa associated with marine environments including Cyanobacteria, Oceanospirillales, Novosphingobium, Pseudoalteromonas, and Bradyrhizobiaceae. Marine influence on fog communities was greatest near the coast, but still evident in Namib fogs 50 km inland. In both systems, differences between pre- and post-fog aerosol communities suggest that fog events can significantly alter microbial aerosol diversity and composition. Fog is likely to enhance viability of transported microbes and facilitate their deposition, making fog biology ecologically important in fog-dominated environments. Fog may introduce novel species to terrestrial ecosystems, including human and plant pathogens, warranting further work on the drivers of this important and underrecognized aerobiological transfer between marine and terrestrial systems.
Collapse
Affiliation(s)
- Sarah E Evans
- Kellogg Biological Station, Department of Integrative Biology, Department of Microbiology and Molecular Genetics, Michigan State University, Hickory Corners, MI, USA.
| | - M Elias Dueker
- Biology Program & Environmental and Urban Studies Program, Bard College, Campus Road, PO Box 5000, Annandale-on-Hudson, NY 12504, USA; Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545-0129, USA; Bard Center for the Study of Land, Air, and Water, Bard College, Campus Road, PO Box 5000, Annandale-on-Hudson, NY 12504, USA.
| | - J Robert Logan
- Kellogg Biological Station, Department of Integrative Biology, Department of Microbiology and Molecular Genetics, Michigan State University, Hickory Corners, MI, USA
| | | |
Collapse
|
9
|
Dueker ME, French S, O'Mullan GD. Comparison of Bacterial Diversity in Air and Water of a Major Urban Center. Front Microbiol 2018; 9:2868. [PMID: 30555433 PMCID: PMC6282627 DOI: 10.3389/fmicb.2018.02868] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/07/2018] [Indexed: 01/22/2023] Open
Abstract
The interaction of wind with aquatic and terrestrial surfaces is known to control the creation of microbial aerosols allowing for their entrainment into air masses that can be transported regionally and globally. Near surface interactions between urban waterways and urban air are understudied but some level of interaction among these bacterial communities would be expected and may be relevant to understanding both urban air and water quality. To address this gap related to patterns of local air-water microbial exchange, we utilized next-generation sequencing of 16S rRNA genes from paired air and water samples collected from 3 urban waterfront sites and evaluated their relative bacterial diversity. Aerosol samples at all sites were significantly more diverse than water samples. Only 17–22% of each site’s bacterial aerosol OTUs were present at every site. These shared aerosol OTUs included taxa associated with terrestrial systems (e.g., Bacillus), aquatic systems (e.g., Planktomarina) and sewage (e.g., Enterococcus). In fact, sewage-associated genera were detected in both aerosol and water samples, (e.g., Bifidobacterium, Blautia, and Faecalibacterium), demonstrating the widespread influence of similar pollution sources across these urban environments. However, the majority (50–61%) of the aerosol OTUs at each site were unique to that site, suggesting that local sources are an important influence on bioaerosols. According to indicator species analysis, each site’s aerosols harbored the highest percentage of bacterial OTUs statistically determined to uniquely represent that site’s aquatic bacterial community, further demonstrating a local connection between water quality and air quality in the urban environment.
Collapse
Affiliation(s)
- M Elias Dueker
- Biology and Environmental & Urban Studies Programs, Bard College, Annandale-on-Hudson, NY, United States.,Bard Center for the Study of Land, Air, and Water, Annandale-on-Hudson, NY, United States.,Cary Institute of Ecosystem Studies, Millbrook, NY, United States
| | - Shaya French
- Biology and Environmental & Urban Studies Programs, Bard College, Annandale-on-Hudson, NY, United States
| | - Gregory D O'Mullan
- School of Earth and Environmental Sciences, Queens College, City University of New York, New York City, NY, United States
| |
Collapse
|
10
|
Graham KE, Prussin AJ, Marr LC, Sassoubre LM, Boehm AB. Microbial community structure of sea spray aerosols at three California beaches. FEMS Microbiol Ecol 2018; 94:4810542. [DOI: 10.1093/femsec/fiy005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/12/2018] [Indexed: 02/04/2023] Open
|
11
|
Dabisch PA, Xu Z, Boydston JA, Solomon J, Bohannon JK, Yeager JJ, Taylor JR, Reeder RJ, Sayre P, Seidel J, Mollura DJ, Hevey MC, Jahrling PB, Lackemeyer MG. Quantification of regional aerosol deposition patterns as a function of aerodynamic particle size in rhesus macaques using PET/CT imaging. Inhal Toxicol 2017; 29:506-515. [DOI: 10.1080/08958378.2017.1409848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P. A. Dabisch
- Battelle National Biodefense Institute for the US Department of Homeland Security, National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA
| | - Z. Xu
- Center for Disease Imaging, Radiology, and Imaging Services, National Institutes of Health, Bethesda, MD, USA
| | - J. A. Boydston
- Battelle National Biodefense Institute for the US Department of Homeland Security, National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA
| | - J. Solomon
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., NCI Campus at Frederick, Frederick, MD, USA
| | - J. K. Bohannon
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| | - J. J. Yeager
- Battelle National Biodefense Institute for the US Department of Homeland Security, National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA
| | - J. R. Taylor
- Battelle National Biodefense Institute for the US Department of Homeland Security, National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA
| | - R. J. Reeder
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| | - P. Sayre
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| | - J. Seidel
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| | - D. J. Mollura
- Center for Disease Imaging, Radiology, and Imaging Services, National Institutes of Health, Bethesda, MD, USA
| | - M. C. Hevey
- Battelle National Biodefense Institute for the US Department of Homeland Security, National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA
| | - P. B. Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| | - M. G. Lackemeyer
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| |
Collapse
|
12
|
Concentration and Size Distribution of Culturable Bacteria in Ambient Air during Spring and Winter in Gliwice: A Typical Urban Area. ATMOSPHERE 2017. [DOI: 10.3390/atmos8120239] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Onshore Wind Speed Modulates Microbial Aerosols along an Urban Waterfront. ATMOSPHERE 2017. [DOI: 10.3390/atmos8110215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Concentrations and Size Distributions of Bacteria-Containing Particles over Oceans from China to the Arctic Ocean. ATMOSPHERE 2017. [DOI: 10.3390/atmos8050082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|